Showing 11,601 - 11,620 results of 52,235 for search '(( a ((((linear decrease) OR (mean decrease))) OR (larger decrease)) ) OR ( a largest decrease ))', query time: 1.01s Refine Results
  1. 11601
  2. 11602

    Optimal Treatment Strategies in the Context of ‘Treatment for Prevention’ against HIV-1 in Resource-Poor Settings by Sulav Duwal (152805)

    Published 2015
    “…We use this platform to optimize two distinct approaches for the treatment of HIV-1: (i) a diagnostic-guided treatment strategy, based on infrequent and patient-specific diagnostic schedules and (ii) a pro-active strategy that allows treatment adaptation prior to diagnostic ascertainment. …”
  3. 11603
  4. 11604
  5. 11605

    Simvastatin alters actin organization, cell morphology, and Rac1 activity in endothelial monolayers. by Marsha C. Lampi (845609)

    Published 2016
    “…Cell circularity, where a perfectly circular cell has a value of 1, decreases with increasing simvastatin concentration (n = 3, 50–54 cells per condition). …”
  6. 11606

    Degree-Days Accumulation at Erie PA and Stuarts Draft VA under the Same Mean with Various DTR Change Conditions. by Shi Chen (120917)

    Published 2015
    “…With same mean temperature, the larger the DTR, the more degree-days can be accumulated in a day.…”
  7. 11607
  8. 11608
  9. 11609
  10. 11610
  11. 11611

    The forest plots of the effect of probiotics on the level of IFN-γ by ELISA (A) and RT-PCR (B) methods. by Zahra Zangeneh (11772967)

    Published 2025
    “…Overall, probiotics decreased IFN-γ production with Std diff in means between probiotics and control groups was -2.492 with ELISA test (A) and -2.453 with RT-PCR test (B).…”
  12. 11612
  13. 11613
  14. 11614

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
  15. 11615

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
  16. 11616

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
  17. 11617

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
  18. 11618

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
  19. 11619

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
  20. 11620

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”