Search alternatives:
largest decrease » largest decreases (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a largest » _ largest (Expand Search), a large (Expand Search), a latest (Expand Search)
largest decrease » largest decreases (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a largest » _ largest (Expand Search), a large (Expand Search), a latest (Expand Search)
-
2221
-
2222
S1 File -
Published 2024“…The proposed lookup table technique leverages the recursive property of linear matrices and the similarity in elements of Hadamard or circulant MDS matrices, allowing the construction of a lookup table for a submatrix instead of the entire linear matrix. …”
-
2223
Linear covariate analysis of prognostically significant metabolites. Presenting the effect sizes of metabolites that showed significant differences among prognostic groups in ICU-treated COVID-19 patients. Metabolites were included based on an F-value > 2.5 and a p-value < 0.05. Metabolites marked with a single asterisk (*) were significant in both two-way ANOVA and ASCA, whereas those marked with double asterisks (**) were significant only in two-way ANOVA. Positive effect sizes indicate an increase in metabolite concentration between the compared groups, while negative values indicate a decrease.
Published 2025“…Positive effect sizes indicate an increase in metabolite concentration between the compared groups, while negative values indicate a decrease.</p>…”
-
2224
Data_Sheet_1_Decreased Deposition of Beta-Amyloid 1-38 and Increased Deposition of Beta-Amyloid 1-42 in Brain Tissue of Presenilin-1 E280A Familial Alzheimer’s Disease Patients.pdf...
Published 2020“…Impaired gamma secretase function favors production of longer beta-amyloid species in PS1 FAD. The PS1 E280A mutation is the largest FAD kindred under study. …”
-
2225
-
2226
-
2227
S1 File -
Published 2024“…Larger body height increased the likelihood of selection by about 12%, larger muscle mass by 12% to 25%, larger bone age by 350–400%, while larger percent body fat decreased selection chances by 7%. …”
-
2228
Flowchart of the selection program.
Published 2024“…Larger body height increased the likelihood of selection by about 12%, larger muscle mass by 12% to 25%, larger bone age by 350–400%, while larger percent body fat decreased selection chances by 7%. …”
-
2229
-
2230
-
2231
-
2232
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2233
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2234
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2235
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2236
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2237
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2238
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2239
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
2240
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”