Search alternatives:
largest decrease » largest decreases (Expand Search), larger decrease (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » greater decrease (Expand Search)
mean decrease » a decrease (Expand Search)
a largest » _ largest (Expand Search), a large (Expand Search), a latest (Expand Search)
largest decrease » largest decreases (Expand Search), larger decrease (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » greater decrease (Expand Search)
mean decrease » a decrease (Expand Search)
a largest » _ largest (Expand Search), a large (Expand Search), a latest (Expand Search)
-
45721
Soil properties and cowpea yield after six years of consecutive amendment of composted tannery sludge
Published 2022“…The soil bulk density decreased linearly while the aggregate stability index increased after compost amendment. …”
-
45722
Image10_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45723
Image2_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.JPEG
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45724
Image14_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45725
Image11_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45726
Image3_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.JPEG
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45727
DataSheet1_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.docx
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45728
Image5_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45729
Image8_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45730
Image1_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45731
Image6_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45732
Image7_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45733
Image15_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45734
Image4_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.JPEG
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45735
Image13_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45736
Image9_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45737
Image12_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
45738
<i>AUC</i><sub><i>best</i></sub>, <i>AUC</i><sub><i>adj</i></sub> and <i>O</i> versus number of features (<i>k</i>) included in the model.
Published 2018“…(b) <i>AUC</i><sub><i>adj</i></sub> − <i>k</i> curves show that as the number of features included in the model increased, the <i>AUC</i><sub><i>adj</i></sub> increased to reach a maximum value, plateaued in some cases, then decreased in models with a high number of features. …”
-
45739
Dynamics of the granule cells in response to sinusoidally oscillating MF signals at 0.5 Hz.
Published 2013“…The reproducibility increases towards 0.9 at the beginning of a cycle, and then linearly decreases towards 0.8, suggesting that the spike patterns of granule cells are highly reproducible across cycles.…”
-
45740
Resolution in crystallographic structures is positively correlated with sequence-structure communication fidelity.
Published 2008“…<p>(A) Linearity between channel capacity <i>C</i> and sequence-structure fidelity <i>q<sub>e</sub><sup>−</sup></i> for thirteen nested sets of structures with increasing crystallographic resolution (Supporting Information <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0003110#pone.0003110.s002" target="_blank">Table S2</a>). …”