Search alternatives:
water decreases » rate decreased (Expand Search), water degrades (Expand Search), greater decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
latent decrease » latency decreased (Expand Search), largest decrease (Expand Search), content decreased (Expand Search)
_ latent » _ late (Expand Search)
water decreases » rate decreased (Expand Search), water degrades (Expand Search), greater decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
latent decrease » latency decreased (Expand Search), largest decrease (Expand Search), content decreased (Expand Search)
_ latent » _ late (Expand Search)
-
1
-
2
-
3
-
4
Contrasting Size Dependence of Photochemical Lifetimes of Polypropylene and Expanded Polystyrene Microplastics in Surface Waters
Published 2025“…We hypothesized that plastic dissolution would increase linearly with increasing surface area (SA)-to-volume (V) ratio as plastics decrease in size. …”
-
5
-
6
-
7
-
8
Structure diagram of ensemble model.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
9
Fitting formula parameter table.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
10
Test plan.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
11
Fitting surface parameters.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
12
Model generalisation validation error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
13
Empirical model prediction error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
14
Fitting curve parameters.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
15
Test instrument.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
16
Empirical model establishment process.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
17
Model prediction error trend chart.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
18
Basic physical parameters of red clay.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
19
BP neural network structure diagram.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
-
20
Structure diagram of GBDT model.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”