Showing 1 - 20 results of 3,182 for search '(( a ((large decrease) OR (larger decrease)) ) OR ((( six n decrease ) OR ( a large decrease ))))', query time: 0.76s Refine Results
  1. 1

    Data from: Colony losses of stingless bees increase in agricultural areas, but decrease in forested areas by Malena Sibaja Leyton (18400983)

    Published 2025
    “…</p><p><br></p><p dir="ltr">#METADATA</p><p dir="ltr">#'data.frame': 472 obs. of 28 variables:</p><p dir="ltr"> #$ ID: Factor variable; a unique identity for the response to the survey</p><p dir="ltr"> #$ Year: Factor variable; six factors available (2016, 2017, 2018, 2019, 2020, 2021) representing the year for the response to the survey</p><p dir="ltr"> #$ N_dead_annual: Numeric variable; representing the number of colonies annually lost</p><p dir="ltr">#$ N_alive_annual: Numeric variable; representing the number of colonies annually alive</p><p dir="ltr"> #$ N_dead_dry: Numeric variable; representing the number of colonies lost during the dry season</p><p dir="ltr">#$ N_alive_dry: Numeric variable; representing the number of colonies alive during the dry season</p><p dir="ltr"> #$ N_dead_rainy: Numeric variable; representing the number of colonies lost during the rainy season</p><p dir="ltr">#$ N_alive_rainy: Numeric variable; representing the number of colonies alive during the rainy season</p><p dir="ltr"> #$ Education: Factor variable; four factors are available ("Self-taught","Learned from another melip","Intro training","Formal tech training"), representing the training level in meliponiculture</p><p dir="ltr"> #$ Operation_Size: Numeric variable; representing the number of colonies managed by the participant (in n)</p><p dir="ltr"> #$ propAgri: Numeric variable; representing the percentage of agricultural area surrounding the meliponary (in %)</p><p dir="ltr"> #$ propForest: Numeric variable; representing the percentage of forested area surrounding the meliponary (in %)</p><p dir="ltr">#$ temp.avg_annual: Numeric variable; representing the average annual temperature (in ºC)</p><p dir="ltr">#$ precip_annual_sum: Numeric variable; representing the total accumulated precipitation (in mm)</p><p dir="ltr">#$ precip_Oct_March_sum: Numeric variable; representing the total accumulated precipitation between October to March (in mm)</p><p dir="ltr">#$ precip_Apri_Sept_sum: Numeric variable; representing the total accumulated precipitation between April to September (in mm)</p><p dir="ltr">#$ temp.avg_Oct_March: Numeric variable; representing the total accumulated precipitation between October to March (in ºC)</p><p dir="ltr">#$ temp.avg_Apri_Sept: Numeric variable; representing the total accumulated precipitation between April to September (in ºC)</p><p dir="ltr"> #$ Importance_dead: Factor variable; three factors are available Normal","High","Very high"), representing the perception of the significance of annual colony losses</p><p dir="ltr"> #$ Climatic_environmental: Binary variable; representing if the participant considered climatic and environmental problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Contamination: Binary variable; representing if the participant considered contamination problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Nutritional: Binary variable; representing if the participant considered nutritional problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Sanitary: Binary variable; representing if the participant considered sanitary problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Queen: Binary variable; representing if the participant considered queen problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Time: Binary variable; representing if the participant considered time problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Economic: Binary variable; representing if the participant considered economic problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Attacks: Binary variable; representing if the participant considered time attacks as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Swarming: Binary variable; representing if the participant considered swarming problems as a potential driver (1) or not (0) of their annual colony losses</p><p><br></p>…”
  2. 2

    <b>Supporting data for manuscript</b> "<b>Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins</b>" by Kira Shaw (18796168)

    Published 2025
    “…The locomotion values (traces and metrics) are in arbitrary units with larger integers representing a greater displacement of the spherical treadmill, the hemodynamic (Hbt) values (traces and metrics) are a percentage change from the normalised baseline (prior to stimulus presentation), and the corresponding time series vector is presented in seconds. …”
  3. 3
  4. 4

    The introduction of mutualisms into assembled communities increases their connectance and complexity while decreasing their richness. by Gui Araujo (22170819)

    Published 2025
    “…When they stop being introduced in further assembly events (i.e. introduced species do not carry any mutualistic interactions), their proportion slowly decreases with successive invasions. (B) Even though higher proportions of mutualism promote higher richness, introducing this type of interaction into already assembled large communities promotes a sudden drop in richness, while stopping mutualism promotes a slight boost in richness increase. …”
  5. 5
  6. 6
  7. 7

    Table 1_Effect of decreased suspended sediment content on chlorophyll-a in Dongting Lake, China.docx by Le Zhang (88249)

    Published 2025
    “…<p>Global damming of rivers strongly impacts the transport and characteristic of sediment, resulting in a significant reduction in the suspended sediment content (SSC) flowing into the downstream. …”
  8. 8
  9. 9
  10. 10

    Geographical distribution of large cities and small cities. by Saul Estrin (8629173)

    Published 2024
    “…The Figure reveals two patterns: 1) the maximum level of innovation is higher in large cities (2.53) than in small cities (2.02); 2) among large cities in <b>a</b>, innovation levels in general decrease with nightlight density. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20