Search alternatives:
largest decrease » largest decreases (Expand Search), larger decrease (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
latent decrease » latency decreased (Expand Search), content decreased (Expand Search), greatest decrease (Expand Search)
mean decrease » a decrease (Expand Search)
largest decrease » largest decreases (Expand Search), larger decrease (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
latent decrease » latency decreased (Expand Search), content decreased (Expand Search), greatest decrease (Expand Search)
mean decrease » a decrease (Expand Search)
-
11161
-
11162
-
11163
-
11164
-
11165
The forest plots of the effect of probiotics on the level of IFN-γ by ELISA (A) and RT-PCR (B) methods.
Published 2025“…Overall, probiotics decreased IFN-γ production with Std diff in means between probiotics and control groups was -2.492 with ELISA test (A) and -2.453 with RT-PCR test (B).…”
-
11166
-
11167
-
11168
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11169
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11170
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11171
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11172
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11173
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11174
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11175
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11176
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11177
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11178
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11179
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”
-
11180
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…This study describes the selective synthesis of linear, trinuclear, halide-bridged Cu<sup>I</sup> complexes [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(MeCN)<sub>2</sub>]<sup>+</sup> (<b>1a</b>: X = Cl; <b>1b</b>: X = Br; <b>1c</b>: X = I) stabilized by the tridentate dpmp ligand obtained by self-assembly reactions in THF/MeCN. …”