Showing 1 - 20 results of 2,633 for search '(( a ((teer decrease) OR (linear decrease)) ) OR ((( _ west decrease ) OR ( _ late decrease ))))', query time: 0.41s Refine Results
  1. 1
  2. 2
  3. 3

    Data Sheet 2_Deep crustal composition and Late Paleozoic geotectonic evolution in West Junggar, China.pdf by Shenglin Xu (12076840)

    Published 2025
    “…The West Junggar area mainly experienced four orogenic stages in the Late Paleozoic. …”
  4. 4

    Data Sheet 3_Deep crustal composition and Late Paleozoic geotectonic evolution in West Junggar, China.pdf by Shenglin Xu (12076840)

    Published 2025
    “…The West Junggar area mainly experienced four orogenic stages in the Late Paleozoic. …”
  5. 5

    Data Sheet 1_Deep crustal composition and Late Paleozoic geotectonic evolution in West Junggar, China.pdf by Shenglin Xu (12076840)

    Published 2025
    “…The West Junggar area mainly experienced four orogenic stages in the Late Paleozoic. …”
  6. 6
  7. 7
  8. 8
  9. 9

    The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER. by Charlotte J. van Ginkel (20790466)

    Published 2025
    “…<p>(A) A steady increase in TEER is seen in differentiated porcine urothelial cells, corresponding with a tight epithelium and reaching the upper reliable limit of the equipment (3300 Ω cm<sup>2</sup>) around day 35. …”
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  16. 16

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  17. 17

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  18. 18

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  19. 19

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  20. 20

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”