Showing 1,721 - 1,740 results of 21,513 for search '(( a ((teer decrease) OR (linear decrease)) ) OR ( a ((greater decrease) OR (largest decrease)) ))', query time: 0.69s Refine Results
  1. 1721
  2. 1722
  3. 1723
  4. 1724
  5. 1725

    Linear and back-splicing alterations correlate with mis-regulation of post-transcriptional regulators. by Dilara Ayyildiz (17145143)

    Published 2023
    “…<p>The schematic (created using <a href="http://Biorender.com" target="_blank">Biorender.com</a>) presents a possible model of action of mutant huntingtin, affecting directly or indirectly (through miRNAs) the expression of post-transcriptional regulators, eventually leading to increased alternative linear splicing and decreased circRNAs biogenesis. …”
  6. 1726
  7. 1727

    Supplementary Material for: Modelling Childhood Growth Using Fractional Polynomials and Linear Splines by Tilling K. (4145887)

    Published 2014
    “…Here, we demonstrate multilevel models for childhood growth either as a smooth function (using fractional polynomials) or a set of connected linear phases (using linear splines). …”
  8. 1728

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  9. 1729

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  10. 1730

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  11. 1731

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  12. 1732

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  13. 1733

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  14. 1734

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  15. 1735

    Test instrument. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  16. 1736

    Empirical model establishment process. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  17. 1737

    Model prediction error trend chart. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  18. 1738

    Basic physical parameters of red clay. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  19. 1739

    BP neural network structure diagram. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”
  20. 1740

    Structure diagram of GBDT model. by Hongqi Wang (2208238)

    Published 2024
    “…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. …”