Search alternatives:
greatest decrease » greater decrease (Expand Search), treatment decreased (Expand Search), greater increase (Expand Search)
largest decrease » largest decreases (Expand Search), larger decrease (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
greatest decrease » greater decrease (Expand Search), treatment decreased (Expand Search), greater increase (Expand Search)
largest decrease » largest decreases (Expand Search), larger decrease (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
13321
Data_Sheet_1_2-Hydroxy-4-(Methylthio) Butanoic Acid Isopropyl Ester Supplementation Altered Ruminal and Cecal Bacterial Composition and Improved Growth Performance of Finishing Bee...
Published 2022“…The concentrations of ammonia–nitrogen (NH<sub>3</sub>-N), propionate, isobutyrate, butyrate, isovalerate, valerate, and total volatile fatty acid (VFA) were linearly decreased in the cecum (P < 0.05). The results of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that the abundance of most pathways with a significant difference was higher in the rumen and lower in the cecum in the H<sub>30</sub> group compared to the H<sub>0</sub> group, and those pathways were mainly related to the metabolism of amino acids, carbohydrates, and lipids. …”
-
13322
Theoretical predictions: Fano factor constancy of synaptic conductances.
Published 2014“…The FF of the synaptic conductances for a network without probabilistic synapses is lower than in the previous case and strongly decreases with firing rate (dashed lines). …”
-
13323
Restoring normal stepping from steady state (standing still).
Published 2013“…The recruitment plays a crucial part in the restoration process. In case A, the recruitment of the fast fibres occurs very fast (instantaneously), while in the cases B and C, it does so linearly over a time interval of 3 s. …”
-
13324
Local supersaturation and the growth of protective scales during CO2 corrosion of steel: Effect of pH and solution flow
Published 2017“…We show that siderite is the first crystalline product and that chukanovite follows, with a delay time that decreases with increasing pH. …”
Get full text
Get full text
-
13325
Photonic Rubber Sheets with Tunable Color by Elastic Deformation
Published 2006“…For example, the peak of reflection was tuned from 589 to 563 nm as a function of sheet elongation. The peak position decreased linearly with deformation when the deformation was within 20% of its elongation. …”
-
13326
Soil properties and cowpea yield after six years of consecutive amendment of composted tannery sludge
Published 2022“…The soil bulk density decreased linearly while the aggregate stability index increased after compost amendment. …”
-
13327
Image10_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13328
Image2_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.JPEG
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13329
Image14_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13330
Image11_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13331
Image3_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.JPEG
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13332
DataSheet1_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.docx
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13333
Image5_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13334
Image8_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13335
Image1_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13336
Image6_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13337
Image7_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13338
Image15_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13339
Image4_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.JPEG
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”
-
13340
Image13_Temperature dependence of dielectric properties of blood at 10 Hz–100 MHz.TIF
Published 2022“…The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. …”