Search alternatives:
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
e decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
e decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
12281
-
12282
-
12283
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
12284
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
12285
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
12286
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
12287
-
12288
-
12289
-
12290
-
12291
-
12292
The Ca<sup>2+</sup>/PKC/p115 signaling axis enables persistent RhoA signaling.
Published 2020“…(<b>B</b>) Residual RhoA activity for various conditions to either increase (+p115, <i>n</i> = 13 cells) or decrease (+p63 with either BAPTA [<i>n</i> = 18 cells] or Gö6983 pretreatment [<i>n</i> = 16 cells]) flux into the Ca<sup>2+</sup>/PKC/p115 signaling axis. …”
-
12293
-
12294
-
12295
-
12296
-
12297
Fig 5 -
Published 2024“…After the growth experiment, fish in all treatments were exposed to <i>Staphylococcus aureus</i> (5×10<sup>5</sup> CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). …”
-
12298
-
12299
-
12300