Search alternatives:
point decrease » point increase (Expand Search)
e decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
point decrease » point increase (Expand Search)
e decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
16481
Image5_Analysis of Geometric and Hemodynamic Profiles in Rat Arteriovenous Fistula Following PDE5A Inhibition.tif
Published 2021“…Geometrical parameters include arterial-venous (A-V) distance, anastomosis angle, tortuosity, and nonplanarity angle magnitude. …”
-
16482
-
16483
-
16484
S1 Data -
Published 2023“…Retention 12 months after ART initiation was 48.7% (95%CI 48.1–49.4%). The LTFU rate was 54.5 per 1000 person-months (95% CI 53.6–55.4), with the peak hazards of LTFU occurring after the first visit and decreasing steadily over time. …”
-
16485
Participant characteristics.
Published 2023“…Retention 12 months after ART initiation was 48.7% (95%CI 48.1–49.4%). The LTFU rate was 54.5 per 1000 person-months (95% CI 53.6–55.4), with the peak hazards of LTFU occurring after the first visit and decreasing steadily over time. …”
-
16486
-
16487
-
16488
Multivariate-adjusted odds ratios for all-cause mortality according to BMI categories.
Published 2016Subjects: -
16489
-
16490
-
16491
-
16492
-
16493
-
16494
-
16495
Table_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
16496
Image_4_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
16497
Table_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
16498
Image_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
16499
Image_3_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
16500
Image_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”