Search alternatives:
largest decrease » marked decrease (Expand Search)
values decrease » values increased (Expand Search)
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
a large » _ large (Expand Search)
largest decrease » marked decrease (Expand Search)
values decrease » values increased (Expand Search)
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
a large » _ large (Expand Search)
-
661
-
662
-
663
-
664
-
665
Quad-Nanopore Array Enables High-Resolution Identification of Four Single-Stranded DNA Homopolymers
Published 2025“…This dual benefit not only reduced the large driving force on DNA but also facilitated molecule capture through nanopores, therefore decreasing the voltage thresholds. …”
-
666
Quad-Nanopore Array Enables High-Resolution Identification of Four Single-Stranded DNA Homopolymers
Published 2025“…This dual benefit not only reduced the large driving force on DNA but also facilitated molecule capture through nanopores, therefore decreasing the voltage thresholds. …”
-
667
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
668
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
669
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
670
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
671
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
672
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
673
Appendix figures.
Published 2025“…</p><p><b>Results:</b> We present SAMCell, a modified version of Meta’s Segment Anything Model (SAM) trained on an existing large-scale dataset of microscopy images containing varying cell types and confluency. …”
-
674
Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection
Published 2025“…Analysis of the solution properties before the onset of LLPS revealed that, in the HAP mole fraction range <i>x</i><sub>HAP</sub> < 0.004 (Zone I), where hydrate H2 ultimately crystallizes, small, solvated clusters are initially present in solution, which remain approximately invariant in size, shape, and HAP/H<sub>2</sub>O proportion as the temperature decreases. For the <i>x</i><sub>HAP</sub> > 0.005 range (Zone III), where anhydrous form I crystallizes, large HAP/water aggregates (that can even percolate the whole system as <i>x</i><sub>HAP</sub> approaches the 0.005 limit) are already initially present in solution. …”
-
675
Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection
Published 2025“…Analysis of the solution properties before the onset of LLPS revealed that, in the HAP mole fraction range <i>x</i><sub>HAP</sub> < 0.004 (Zone I), where hydrate H2 ultimately crystallizes, small, solvated clusters are initially present in solution, which remain approximately invariant in size, shape, and HAP/H<sub>2</sub>O proportion as the temperature decreases. For the <i>x</i><sub>HAP</sub> > 0.005 range (Zone III), where anhydrous form I crystallizes, large HAP/water aggregates (that can even percolate the whole system as <i>x</i><sub>HAP</sub> approaches the 0.005 limit) are already initially present in solution. …”
-
676
Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection
Published 2025“…Analysis of the solution properties before the onset of LLPS revealed that, in the HAP mole fraction range <i>x</i><sub>HAP</sub> < 0.004 (Zone I), where hydrate H2 ultimately crystallizes, small, solvated clusters are initially present in solution, which remain approximately invariant in size, shape, and HAP/H<sub>2</sub>O proportion as the temperature decreases. For the <i>x</i><sub>HAP</sub> > 0.005 range (Zone III), where anhydrous form I crystallizes, large HAP/water aggregates (that can even percolate the whole system as <i>x</i><sub>HAP</sub> approaches the 0.005 limit) are already initially present in solution. …”
-
677
Digital Microfluidic Platform Based on Printed Circuit Board for Affinity Evaluation of Mertansine Aptamers
Published 2025“…Compared with manual methods, the digital microfluidic platform not only reduced the time for a single determination from 105 to 45 min but also significantly decreased the reagent consumption from 1280 to 30.72 μL. …”
-
678
-
679
-
680