Showing 21 - 40 results of 53,253 for search '(( a large increases ) OR ((( via large decrease ) OR ( via ((mean decrease) OR (a decrease)) ))))', query time: 1.01s Refine Results
  1. 21

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  2. 22

    MAP-map analysis of activity decreases within olfactory bulb and preoptic dopaminergic regions. by Jessica C. Nelson (10906236)

    Published 2023
    “…<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1010650#pgen.1010650.g007" target="_blank">Fig 7</a> shows increased activity in olfactory bulb dopaminergic neurons in <i>ap2s1</i> and <i>pappaa</i> mutants and preoptic dopaminergic neurons in <i>pappaa</i> mutants. …”
  3. 23
  4. 24
  5. 25
  6. 26
  7. 27
  8. 28
  9. 29
  10. 30
  11. 31
  12. 32
  13. 33
  14. 34
  15. 35
  16. 36

    Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4‑Pyridyl Substituents by Alison M. Costello (16456762)

    Published 2023
    “…To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. …”
  17. 37

    Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4‑Pyridyl Substituents by Alison M. Costello (16456762)

    Published 2023
    “…To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. …”
  18. 38
  19. 39
  20. 40