Showing 1 - 20 results of 2,103 for search '(( a laser decrease ) OR ((( via ((we decrease) OR (teer decrease)) ) OR ( _ largest decrease ))))', query time: 0.57s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  6. 6

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  7. 7

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  8. 8

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  9. 9

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  10. 10

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  11. 11

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  12. 12

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  13. 13

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  14. 14

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  15. 15

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  16. 16

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  17. 17

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  18. 18

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  19. 19

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  20. 20