Showing 1 - 20 results of 2,152 for search '(( a latent decrease ) OR ((( via marked decrease ) OR ( a marked decrease ))))', query time: 0.55s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Sodium Carboxymethyl Starch Films with Enhanced Cross-Linking, Electrical, and Mechanical Properties via Supercritical-Assisted Modification by Mingge Wang (16859159)

    Published 2025
    “…Mechanically, Young’s modulus decreased to 35.5% of its original value (from 203.50 to 71.15 MPa), while the elongation at break increased 5-fold (from 11.5 to 56.7%), transitioning CMS-Na from a rigid, brittle material to a ductile, flexible one. …”
  10. 10

    Sodium Carboxymethyl Starch Films with Enhanced Cross-Linking, Electrical, and Mechanical Properties via Supercritical-Assisted Modification by Mingge Wang (16859159)

    Published 2025
    “…Mechanically, Young’s modulus decreased to 35.5% of its original value (from 203.50 to 71.15 MPa), while the elongation at break increased 5-fold (from 11.5 to 56.7%), transitioning CMS-Na from a rigid, brittle material to a ductile, flexible one. …”
  11. 11

    Sodium Carboxymethyl Starch Films with Enhanced Cross-Linking, Electrical, and Mechanical Properties via Supercritical-Assisted Modification by Mingge Wang (16859159)

    Published 2025
    “…Mechanically, Young’s modulus decreased to 35.5% of its original value (from 203.50 to 71.15 MPa), while the elongation at break increased 5-fold (from 11.5 to 56.7%), transitioning CMS-Na from a rigid, brittle material to a ductile, flexible one. …”
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    Modeling the Shape and Stability of Co Nanoparticles as a Function of Size and Support Interactions through DFT Calculations and Monte Carlo Simulations by Enrico Sireci (12127349)

    Published 2025
    “…We report a marked increase in step and kink sites at the expense of terraces with increasing particle size, which we linked to the experimentally observed increase in turnover frequency (TOF). …”
  19. 19
  20. 20