Showing 1 - 20 results of 5,202 for search '(( a latest decrease ) OR ((( via ((greater decrease) OR (a decrease)) ) OR ( a large decrease ))))', query time: 0.57s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    A lysine-restricted diet ameliorates obesity via enrichment of Parabacteroides goldsteinii and 1,4-methylimidazoleacetic acid by Chengzhi Chen (19567437)

    Published 2025
    “…Metabolomics revealed that P. goldsteinii increases 1,4-methylimidazoleacetic acid (MIAA), a metabolite linked to decreased body weight in animal models. …”
  8. 8

    Table 1_Imeglimin may affect hemoglobin A1c accuracy via prolongation of erythrocyte lifespan in patients with type 2 diabetes mellitus: insights from the INFINITY clinical trial.d... by Takeshi Osonoi (1951555)

    Published 2025
    “…</p>Results<p>The change in hemoglobin concentration at 6 months was not statistically significant (mean ± SD: −0.2 ± 0.9 g/dL; p = 0.23). While HbA1c and GA decreased and 1,5-AG increased one month after imeglimin initiation, GA and 1,5-AG showed rapid changes compared to the gradual decrease in HbA1c. …”
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  14. 14

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  15. 15

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  16. 16

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  17. 17

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  18. 18

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  19. 19
  20. 20