Showing 1 - 20 results of 5,285 for search '(( a marked decrease ) OR ((( via ((a decrease) OR (point decrease)) ) OR ( a largest decrease ))))', query time: 0.56s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Overview of study procedures. by Matthew G. Vinson (22593374)

    Published 2025
    “…Participants (n = 425) were randomized to either view an electronically-administered educational video informed by the COM-B behavioral change model (VIDEO, n = 223) or the FDA Drug Facts label for NSAIDs (CONTROL, n = 202). Intent to decrease OTC NSAIDs was evaluated via 11-point contemplation ladder immediately and 4 weeks post-intervention, with self-reported NSAID Exposure assessed at 4 weeks. …”
  16. 16
  17. 17
  18. 18

    Modeling the Shape and Stability of Co Nanoparticles as a Function of Size and Support Interactions through DFT Calculations and Monte Carlo Simulations by Enrico Sireci (12127349)

    Published 2025
    “…We make use of a lattice model where the energy of Co atoms is estimated based on their first-shell coordination number (CN), an approach that was validated via DFT calculations. …”
  19. 19

    Sodium Carboxymethyl Starch Films with Enhanced Cross-Linking, Electrical, and Mechanical Properties via Supercritical-Assisted Modification by Mingge Wang (16859159)

    Published 2025
    “…Mechanically, Young’s modulus decreased to 35.5% of its original value (from 203.50 to 71.15 MPa), while the elongation at break increased 5-fold (from 11.5 to 56.7%), transitioning CMS-Na from a rigid, brittle material to a ductile, flexible one. …”
  20. 20

    Sodium Carboxymethyl Starch Films with Enhanced Cross-Linking, Electrical, and Mechanical Properties via Supercritical-Assisted Modification by Mingge Wang (16859159)

    Published 2025
    “…Mechanically, Young’s modulus decreased to 35.5% of its original value (from 203.50 to 71.15 MPa), while the elongation at break increased 5-fold (from 11.5 to 56.7%), transitioning CMS-Na from a rigid, brittle material to a ductile, flexible one. …”