Search alternatives:
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a point » _ point (Expand Search), 5 point (Expand Search), _ points (Expand Search)
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a point » _ point (Expand Search), 5 point (Expand Search), _ points (Expand Search)
-
107481
p53 gene silienc by siRNA can reverse DEX induced apoptosis and cell cycle arrest of MC3T3-E1 cells.
Published 2013“…<p>(A) Real time PCR examination of MC3T3-E1 cells in which the p53 gene function was silenced by siRNA (sip53-1, sip53-2) targeting p53mRNA; the mRNA expression level of p53 in the sip53-1and sip53-2 groups decreased significantly (P<0.05) compared to that in the FBS group and the siC group. …”
-
107482
Table_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.DOCX
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107483
Table_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107484
<i>In vitro</i> cardiomyocyte function in saline/RA and LPS/O<sub>2</sub> exposed mice at 8 weeks of age.
Published 2013“…<p>(A) % Peak shortening (% PS) was increased in the LPS/RA exposed mice. …”
-
107485
Table_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107486
Data_Sheet_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107487
Table_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107488
Data_Sheet_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107489
Data_Sheet_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107490
Table_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107491
Table_7_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107492
Data_Sheet_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107493
Data_Sheet_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX
Published 2020“…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
-
107494
-
107495
-
107496
-
107497
-
107498
Modelling Viscosity Temperature Dependence of Supercooled Sucrose SolutionsThe Random-Walk Approach
Published 2007“…The random walk approach is based on the distribution of molecular energies, thus having a theoretical support not found in the VFT model. …”
-
107499
Role of microglial activation at the early induction phase and late maintenance phase of neuropathic pain.
Published 2011“…<p>A. Time schedule of chronic administration of minocycline from the early induction phase to the late maintenance phase. …”
-
107500