Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
-
681
-
682
-
683
-
684
-
685
-
686
-
687
-
688
-
689
-
690
-
691
Trabectedin induced apoptosis in a dose-dependent manner as measured by the Muse™ Annexin V and Dead Cell assay.
Published 2015“…Cells were treated with 0.1, 1, 10 and 100 nM trabectedin for 48 h. After incubation time cells were collected and the phosphatydilserine externalization was evaluated using Annexin V protocol as describe. …”
-
692
The ATR IR signal decreases with decreasing dilutions of cells.
Published 2013“…<p>Shown is a box plot for serial dilutions of a glioblastoma cell suspension. …”
-
693
-
694
-
695
Patch-clamp recording of SW480 and SW620 cells.
Published 2014“…The currents were recorded at a holding potential of 0 mV followed by pulsing voltages between ±100 mV in steps of 20 mV. …”
-
696
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
697
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
698
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
699
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
-
700
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”