Showing 24,321 - 24,337 results of 24,337 for search '(( a step decrease ) OR ( 100 ((((nn decrease) OR (we decrease))) OR (a decrease)) ))', query time: 0.83s Refine Results
  1. 24321

    DataSheet_1_Global Transcriptomics Uncovers Distinct Contributions From Splicing Regulatory Proteins to the Macrophage Innate Immune Response.pdf by Allison R. Wagner (11102217)

    Published 2021
    “…Given their crucial role in regulating pre-mRNA splicing and other RNA processing steps, we hypothesized that members of the SR/hnRNP protein families regulate innate immune gene expression in distinct ways. …”
  2. 24322

    Semi-continuous anaerobic digestion of the organic fraction of municipal solid waste: digester performance and microbial population dynamics by Najoua, Mlaik

    Published 2022
    “…Anaerobic digestion is an attractive approach for the management of organic fraction of municipal solid waste (OFMSW) and for the recovery of energy from this waste. A semi-continuous digestion of OFMSW was conducted on stirred reactor under mesophilic condition. …”
    Get full text
    Get full text
    Get full text
  3. 24323

    Abnormal spermatogenesis in <i>Dicer1</i> knockout mice. by Hanna M. Korhonen (205372)

    Published 2011
    “…<p>A) Decreased size of adult <i>Dcr(fx/fx);Ngn3Cre</i> testes as compared to <i>Dcr(fx/fx)</i> or <i>Dcr(fx/wt); Ngn3Cre</i> testes. …”
  4. 24324

    Proximity to forests, disturbance and plantation traits influence understory species richness but not phylogenetic diversity in African mahogany plantations by Orou Gaoue (425406)

    Published 2025
    “…<p dir="ltr">Human-modified ecosystems such as plantations, previously considered as green deserts, can serve as stepping-stones or corridors for species to migrate between source and sink populations, thus maintaining metapopulations. …”
  5. 24325

    Data_Sheet_1_Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain.pdf by Nicolas Dupré (357758)

    Published 2020
    “…This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. …”
  6. 24326

    Table_1_Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain.xlsx by Nicolas Dupré (357758)

    Published 2020
    “…This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. …”
  7. 24327

    Supporting Data for Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed by Kira Shaw (4467583)

    Published 2022
    “…<br></div><div><br></div><div>Abstract <br></div><div>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  8. 24328

    Data_Sheet_1_The Proinflammatory Role of Guanylate-Binding Protein 5 in Inflammatory Bowel Diseases.docx by Yichen Li (200944)

    Published 2022
    “…In addition, GBP5 may upregulate inflammatory reactions through an inflammasome-mediated mechanism. Since GBP5 plays a proinflammatory role at the early steps of the inflammatory cascades of IBD pathogenesis, and is implicated in IBD patients of distinct genetic and environmental backgrounds, targeting GBP5 could be an effective strategy for the management of IBD.…”
  9. 24329

    THE IMPACT OF CLIMATE CHANGE ON THE ADAPTATION OF LOCAL CROP YIELD IN MAYUKWAYUKWA SETTLEMENT OF KAOMA DISTICT IN WESTERN PROVINCE by Chikondi Mbewe (17419309)

    Published 2023
    “…</p><p dir="ltr">The next steps involve addressing decreased rainfall in the Western province, likely attributed to human-induced activities like deforestation. …”
  10. 24330

    Data_Sheet_1_Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed.pdf by Kira Shaw (11099383)

    Published 2022
    “…<p>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  11. 24331

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  12. 24332

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  13. 24333

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  14. 24334

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  15. 24335

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  16. 24336

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  17. 24337

    Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves by Fubiao Wang (2994375)

    Published 2016
    “…The <i>psf</i> showed evidently decreased D1 protein amount in the senescent leaves. …”