Showing 13,561 - 13,580 results of 24,124 for search '(( a step decrease ) OR ( 100 ((((we decrease) OR (nn decrease))) OR (a decrease)) ))', query time: 0.68s Refine Results
  1. 13561

    Adsorption and Crystallization of Particles at the Air–Water Interface Induced by Minute Amounts of Surfactant by Manos Anyfantakis (1440367)

    Published 2018
    “…Controlling the organization of particles at liquid–gas interfaces usually relies on multiphasic preparations and external applied forces. Here, we show that micromolar amounts of a conventional cationic surfactant induce, in a single step, both adsorption and crystallization of various types of nanometer- to micrometer-sized anionic particles at the air–water interface, without any additional phase involved or external forces other than gravity. …”
  2. 13562

    Supplementary Material for: Decline in Gait Performance Detected by an Electronic Walkway System in 907 Older Adults of the Population-Based KORA-Age Study by Autenrieth C.S. (4134676)

    Published 2012
    “…<b><i>Background:</i></b> Gait changes at older ages are a strong predictor of a decline in lower extremity functions. …”
  3. 13563

    GCP proliferation induced by WNT3 is not dependent on the BMP pathway. by Sandrine L. Anne (489755)

    Published 2013
    “…<p>(<i>A</i>) WNT3 and BMPs (BMP2, BMP4, BMP6, and BMP7) cooperated to decrease proliferation of GCPs as measured by [<sup>3</sup>H]-Thymidine incorporation assay. …”
  4. 13564

    HIV-1 envelope glycoprotein gp41 schematic and structure of the 2F5 antibody-peptide complex. by Javier Guenaga (150719)

    Published 2012
    “…Residues at the apex of the CDRH3 in magenta (<sub>100A</sub>LFGV<sub>100D</sub>) were not altered. …”
  5. 13565

    Table_1_Study on the additional financial burden of breast cancer disease on cancer patients and their families. Financial toxicity in cancer.XLSX by Eduardo J. Fernandez-Rodriguez (18963088)

    Published 2024
    “…However, after being diagnosed with breast cancer, there is a significant income decrease of 15.91%, resulting in a reduced average annual income of 16785.98 euros. …”
  6. 13566

    Possible Increase in Serum FABP4 Level Despite Adiposity Reduction by Canagliflozin, an SGLT2 Inhibitor by Masato Furuhashi (85555)

    Published 2016
    “…Treatment with canagliflozin significantly decreased adiposity and levels of fasting glucose and HbA1c but increased average serum FABP4 level by 10.3% (18.0 ± 1.0 vs. 19.8 ± 1.2 ng/ml, P = 0.008), though elevation of FABP4 level after treatment was observed in 26 (66.7%) out of 39 patients. …”
  7. 13567

    <i>ACVR2</i> promoter hypermethylation and LOH in colon cancer specimens and the MSS HT29 cell line and correlation of <i>ACVR2</i> promoter hypermethylation and loss of <i>ACVR2</... by Barbara Jung (155690)

    Published 2009
    “…<p>A) ACVR2 promoter with map of positioning of MSP primers B) Using a CpG islands search program, we identified the CpG islands within the <i>ACVR2</i> promoter based upon following stringent criteria: ∼CG percentage>55%; observed CpG/expected CpG >0.65; length >500 bp. …”
  8. 13568

    Supplementary Material for: The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in... by Reuther C. (3593810)

    Published 2016
    “…The small molecule NVP-CGM097 is a novel MDM2 inhibitor. We investigated MDM2 inhibition as a target in neuroendocrine tumor cells in vitro. …”
  9. 13569

    Data_Sheet_1_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.DOCX... by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  10. 13570

    Table_13_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  11. 13571

    Table_12_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  12. 13572

    Table_6_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  13. 13573

    Table_3_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  14. 13574

    Table_5_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  15. 13575

    Table_2_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  16. 13576

    Table_9_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  17. 13577

    Table_11_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  18. 13578

    Table_7_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  19. 13579

    Table_4_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  20. 13580

    Table_1_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.docx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”