Showing 23,981 - 23,994 results of 23,994 for search '(( a step decrease ) OR ( 100 ((nn decrease) OR (((teer decrease) OR (a decrease)))) ))', query time: 0.70s Refine Results
  1. 23981

    Proximity to forests, disturbance and plantation traits influence understory species richness but not phylogenetic diversity in African mahogany plantations by Orou Gaoue (425406)

    Published 2025
    “…<p dir="ltr">Human-modified ecosystems such as plantations, previously considered as green deserts, can serve as stepping-stones or corridors for species to migrate between source and sink populations, thus maintaining metapopulations. …”
  2. 23982

    Data_Sheet_1_Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain.pdf by Nicolas Dupré (357758)

    Published 2020
    “…This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. …”
  3. 23983

    Table_1_Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain.xlsx by Nicolas Dupré (357758)

    Published 2020
    “…This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. …”
  4. 23984

    Supporting Data for Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed by Kira Shaw (4467583)

    Published 2022
    “…<br></div><div><br></div><div>Abstract <br></div><div>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  5. 23985

    Data_Sheet_1_The Proinflammatory Role of Guanylate-Binding Protein 5 in Inflammatory Bowel Diseases.docx by Yichen Li (200944)

    Published 2022
    “…In addition, GBP5 may upregulate inflammatory reactions through an inflammasome-mediated mechanism. Since GBP5 plays a proinflammatory role at the early steps of the inflammatory cascades of IBD pathogenesis, and is implicated in IBD patients of distinct genetic and environmental backgrounds, targeting GBP5 could be an effective strategy for the management of IBD.…”
  6. 23986

    THE IMPACT OF CLIMATE CHANGE ON THE ADAPTATION OF LOCAL CROP YIELD IN MAYUKWAYUKWA SETTLEMENT OF KAOMA DISTICT IN WESTERN PROVINCE by Chikondi Mbewe (17419309)

    Published 2023
    “…</p><p dir="ltr">The next steps involve addressing decreased rainfall in the Western province, likely attributed to human-induced activities like deforestation. …”
  7. 23987

    Data_Sheet_1_Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed.pdf by Kira Shaw (11099383)

    Published 2022
    “…<p>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  8. 23988

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  9. 23989

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  10. 23990

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  11. 23991

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  12. 23992

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  13. 23993

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  14. 23994

    Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves by Fubiao Wang (2994375)

    Published 2016
    “…The <i>psf</i> showed evidently decreased D1 protein amount in the senescent leaves. …”