Showing 841 - 860 results of 102,536 for search '(( a step decrease ) OR ( 5 ((((ng decrease) OR (a decrease))) OR (nn decrease)) ))', query time: 1.97s Refine Results
  1. 841

    Image1_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  2. 842

    Image2_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  3. 843

    Image4_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  4. 844

    Image3_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  5. 845

    Image3_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  6. 846

    Image2_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  7. 847

    Image4_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  8. 848

    Image1_Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism.TIF by Franciel Batista Felix (10699536)

    Published 2021
    “…BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. …”
  9. 849

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  10. 850

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  11. 851

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  12. 852

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  13. 853

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  14. 854

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  15. 855

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  16. 856

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  17. 857

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  18. 858
  19. 859

    FUD transiently decreased IOP in mice injected with Ad5-TGFβ2 viral vector. by Jennifer A. Faralli (4907311)

    Published 2020
    “…(B) IOPs were monitored for 5 more days (until Day 22) in a subset of mice from A. …”
  20. 860

    Monofunctional Hyperbranched Ethylene Oligomers by Thomas Wiedemann (1850746)

    Published 2014
    “…Consequently, only <b>1a-pyr</b> forms hyperbranched structures over a wide range of reaction conditions (ethylene pressure 5–30 atm and 20–70 °C). …”