Search alternatives:
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
-
99141
-
99142
-
99143
Image_8_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG
Published 2020“…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
-
99144
Amelioration of Huntington’s disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington’s disease monkeys
Published 2019“…Expression of <i>mHTT</i> in differentiated astrocytes induced cytosolic mHTT aggregates and nuclear inclusions, suppressed the expression of <i>SOD2</i> and <i>PGC1</i>, reduced ability to uptake glutamate, decreased 4-aminopyridine (4-AP) response, and shifted I/V plot measured by electrophysiology, which are consistent with previous reports on HD astrocytes and patient brain samples. …”
-
99145
Image_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG
Published 2020“…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
-
99146
Table_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.DOCX
Published 2020“…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
-
99147
-
99148
DataSheet_1_Shifting sensitivity of septoria tritici blotch compromises field performance and yield of main fungicides in Europe.docx
Published 2022“…<p>Septoria tritici blotch (STB; Zymoseptoria tritici) is a severe leaf disease on wheat in Northern Europe. …”
-
99149
-
99150
Table_1_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.DOCX
Published 2020“…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
-
99151
Image_7_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG
Published 2020“…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
-
99152
DataSheet_6_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see...
Published 2022“…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
-
99153
DataSheet_4_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see...
Published 2022“…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
-
99154
DataSheet_2_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see...
Published 2022“…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
-
99155
DataSheet_1_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see...
Published 2022“…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
-
99156
DataSheet_3_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the see...
Published 2022“…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
-
99157
-
99158
-
99159
-
99160