Showing 18,001 - 18,020 results of 104,446 for search '(( a step decrease ) OR ( 5 ((point decrease) OR (((mean decrease) OR (a decrease)))) ))', query time: 1.50s Refine Results
  1. 18001

    Fig 3 - by Yan Shu (441370)

    Published 2022
  2. 18002

    Fig 4 - by Yan Shu (441370)

    Published 2022
  3. 18003

    Fig 2 - by Yan Shu (441370)

    Published 2022
  4. 18004

    Image_7_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  5. 18005

    Image_6_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  6. 18006

    Image_1_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  7. 18007

    Image_3_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  8. 18008
  9. 18009
  10. 18010
  11. 18011
  12. 18012
  13. 18013
  14. 18014

    DataSheet_1_SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively affecting HIV-1 post-integration steps.pdf by Helene Sertznig (9649127)

    Published 2022
    “…In the presence of high APOBEC3G levels, however, increased LTR activity upon SRSF1 knockdown facilitated the overall replication, despite decreased vif mRNA levels. In contrast, SRSF1 overexpression significantly impaired HIV-1 post-integration steps including LTR transcription, alternative splice site usage, and virus particle production. …”
  15. 18015
  16. 18016
  17. 18017

    A simplified model for ePop function. by Philippe Marguet (244746)

    Published 2010
    “…Degradation of RNA I is described by a Hill-type function (Hill coefficient, <i>v</i>) to account for possible cooperativity. …”
  18. 18018

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
  19. 18019

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
  20. 18020

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”