Showing 2,201 - 2,220 results of 103,027 for search '(( a step decrease ) OR ( 5 ((point decrease) OR (((nn decrease) OR (a decrease)))) ))', query time: 1.44s Refine Results
  1. 2201
  2. 2202
  3. 2203

    Hsp72 overexpression decreases total NF-κB-p65 in resting cells and reduces steady state IκBα protein levels. by Patrick W. Sheppard (586664)

    Published 2014
    “…Gray data points are rescaled from <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003471#pcbi-1003471-g001" target="_blank">Fig. 1B</a>. …”
  4. 2204

    S1 Data - by Mahmoud A. Alomari (14780446)

    Published 2023
    “…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported adecrease” in SH during confinement. …”
  5. 2205
  6. 2206

    The participant demographic (n = 1844). by Mahmoud A. Alomari (14780446)

    Published 2023
    “…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported adecrease” in SH during confinement. …”
  7. 2207

    Prevalence of smoking during COVID19 (n = 1844). by Mahmoud A. Alomari (14780446)

    Published 2023
    “…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported adecrease” in SH during confinement. …”
  8. 2208
  9. 2209
  10. 2210
  11. 2211
  12. 2212
  13. 2213
  14. 2214
  15. 2215

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  16. 2216

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  17. 2217

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  18. 2218

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  19. 2219

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  20. 2220

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”