Search alternatives:
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
point decrease » point increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
-
15121
-
15122
-
15123
-
15124
-
15125
-
15126
DataSheet_1_SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively affecting HIV-1 post-integration steps.pdf
Published 2022“…In the presence of high APOBEC3G levels, however, increased LTR activity upon SRSF1 knockdown facilitated the overall replication, despite decreased vif mRNA levels. In contrast, SRSF1 overexpression significantly impaired HIV-1 post-integration steps including LTR transcription, alternative splice site usage, and virus particle production. …”
-
15127
-
15128
-
15129
A simplified model for ePop function.
Published 2010“…Degradation of RNA I is described by a Hill-type function (Hill coefficient, <i>v</i>) to account for possible cooperativity. …”
-
15130
Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands
Published 2022“…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
-
15131
Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands
Published 2022“…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
-
15132
Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands
Published 2022“…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
-
15133
Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands
Published 2022“…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
-
15134
Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands
Published 2022“…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
-
15135
-
15136
-
15137
Integrin αVβ5 antibody inhibits the uptake of ROS by piPSC-RPE cells.
Published 2015“…Addition of an inhibitory anti-integrin αVβ5 antibody significantly decreased phagocytosis by approximately 50% in piPSC-RPE cells. …”
-
15138
-
15139
-
15140
Simultaneously inhibition <i>Nlu-miR-34</i> and <i>NlInR2</i> in SW strain induced the decrease of SW BPHs.
Published 2019“…<p>(A) Antagomir-34 (with two different quantities) and ds<i>NlInR2</i> (0.84 ng) were injected into the third instar SW strain nymphs, showed that injection of antagomir-34 decreased the ratio of SW type BPH (Chi-square test, 40ng: χ<sup>2</sup> = 5.8, df = 1, <i>p</i> = 0.003; 60ng: χ<sup>2</sup> = 7.9, df = 1, <i>p</i> = 0.042). …”