Showing 31,361 - 31,376 results of 31,376 for search '(( a step decrease ) OR ( 50 ((((ms decrease) OR (a decrease))) OR (nn decrease)) ))', query time: 0.71s Refine Results
  1. 31361

    DataSheet_1_Global Transcriptomics Uncovers Distinct Contributions From Splicing Regulatory Proteins to the Macrophage Innate Immune Response.pdf by Allison R. Wagner (11102217)

    Published 2021
    “…Given their crucial role in regulating pre-mRNA splicing and other RNA processing steps, we hypothesized that members of the SR/hnRNP protein families regulate innate immune gene expression in distinct ways. …”
  2. 31362

    Proximity to forests, disturbance and plantation traits influence understory species richness but not phylogenetic diversity in African mahogany plantations by Orou Gaoue (425406)

    Published 2025
    “…<p dir="ltr">Human-modified ecosystems such as plantations, previously considered as green deserts, can serve as stepping-stones or corridors for species to migrate between source and sink populations, thus maintaining metapopulations. …”
  3. 31363

    Table_1_Feasibility and Effect of Physiological-Based CPAP in Preterm Infants at Birth.pdf by Tessa Martherus (8116559)

    Published 2021
    “…PB-CPAP consisted of 15 cmH<sub>2</sub>O CPAP that was decreased when infants were stabilized (heart rate ≥100 bpm, SpO<sub>2</sub> ≥85%, FiO<sub>2</sub> ≤ 0.4, spontaneous breathing) to 8 cmH<sub>2</sub>O with steps of ~2/3 cmH<sub>2</sub>O/min. …”
  4. 31364

    Data_Sheet_1_Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain.pdf by Nicolas Dupré (357758)

    Published 2020
    “…This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. …”
  5. 31365

    Table_1_Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain.xlsx by Nicolas Dupré (357758)

    Published 2020
    “…This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. …”
  6. 31366

    Supporting Data for Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed by Kira Shaw (4467583)

    Published 2022
    “…<br></div><div><br></div><div>Abstract <br></div><div>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  7. 31367

    Data_Sheet_1_The Proinflammatory Role of Guanylate-Binding Protein 5 in Inflammatory Bowel Diseases.docx by Yichen Li (200944)

    Published 2022
    “…In addition, GBP5 may upregulate inflammatory reactions through an inflammasome-mediated mechanism. Since GBP5 plays a proinflammatory role at the early steps of the inflammatory cascades of IBD pathogenesis, and is implicated in IBD patients of distinct genetic and environmental backgrounds, targeting GBP5 could be an effective strategy for the management of IBD.…”
  8. 31368

    THE IMPACT OF CLIMATE CHANGE ON THE ADAPTATION OF LOCAL CROP YIELD IN MAYUKWAYUKWA SETTLEMENT OF KAOMA DISTICT IN WESTERN PROVINCE by Chikondi Mbewe (17419309)

    Published 2023
    “…</p><p dir="ltr">The next steps involve addressing decreased rainfall in the Western province, likely attributed to human-induced activities like deforestation. …”
  9. 31369

    Data_Sheet_1_Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed.pdf by Kira Shaw (11099383)

    Published 2022
    “…<p>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  10. 31370

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  11. 31371

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  12. 31372

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  13. 31373

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  14. 31374

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  15. 31375

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  16. 31376

    Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves by Fubiao Wang (2994375)

    Published 2016
    “…The <i>psf</i> showed evidently decreased D1 protein amount in the senescent leaves. …”