Search alternatives:
marked decrease » marked increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a marked » _ marked (Expand Search), a marker (Expand Search), a market (Expand Search)
marked decrease » marked increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a marked » _ marked (Expand Search), a marker (Expand Search), a market (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
Elementary Steps in Olefin Metathesis: Nickelacyclobutanes via Cycloaddition to Nickel Carbenes
Published 2025Subjects: -
7
Modeling the Shape and Stability of Co Nanoparticles as a Function of Size and Support Interactions through DFT Calculations and Monte Carlo Simulations
Published 2025“…We report a marked increase in step and kink sites at the expense of terraces with increasing particle size, which we linked to the experimentally observed increase in turnover frequency (TOF). …”
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
16
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
17
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
18
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
19
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
20
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”