Showing 101,641 - 101,660 results of 103,627 for search '(( a web decrease ) OR ( 5 ((((we decrease) OR (mean decrease))) OR (a decrease)) ))', query time: 1.59s Refine Results
  1. 101641
  2. 101642
  3. 101643
  4. 101644
  5. 101645
  6. 101646

    DataSheet1_Analysis of synthesized doped vertical silicon nanowire arrays for effective sensing of nitrogen dioxide: As gas sensors.pdf by Vikas Kashyap (14167134)

    Published 2022
    “…The optical band gap (E<sub>g</sub>) is observed to increase from 1.64 to 1.89 eV with the decreasing of the crystallite size and the optical reflection spectra of the Si NWs show a shift toward a lower wavelength (blue shift). …”
  7. 101647
  8. 101648
  9. 101649
  10. 101650
  11. 101651
  12. 101652

    p53 gene silienc by siRNA can reverse DEX induced apoptosis and cell cycle arrest of MC3T3-E1 cells. by Hui Li (32376)

    Published 2013
    “…<p>(A) Real time PCR examination of MC3T3-E1 cells in which the p53 gene function was silenced by siRNA (sip53-1, sip53-2) targeting p53mRNA; the mRNA expression level of p53 in the sip53-1and sip53-2 groups decreased significantly (P<0.05) compared to that in the FBS group and the siC group. …”
  13. 101653

    Table_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.DOCX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  14. 101654

    Table_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  15. 101655

    <i>In vitro</i> cardiomyocyte function in saline/RA and LPS/O<sub>2</sub> exposed mice at 8 weeks of age. by Markus Velten (77282)

    Published 2013
    “…<p>(A) % Peak shortening (% PS) was increased in the LPS/RA exposed mice. …”
  16. 101656

    Table_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  17. 101657

    Data_Sheet_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  18. 101658

    Table_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  19. 101659

    Data_Sheet_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  20. 101660

    Data_Sheet_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”