Search alternatives:
web decrease » we decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
ng decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a web » _ web (Expand Search)
web decrease » we decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
ng decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a web » _ web (Expand Search)
-
11481
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11482
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11483
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11484
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11485
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11486
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11487
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11488
-
11489
-
11490
Inhibition of MRSA and MSSA biofilm growth <i>in vitro</i> with different concentrations of eugenol.
Published 2015“…<p>(A) Decreased biofilm biomass detected using the microtiter plate assay. …”
-
11491
-
11492
-
11493
-
11494
-
11495
Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams
Published 2018“…Furthermore, it is uncertain whether plant diversity loss affects other ecological processes related to decomposition, such as fine particulate organic matter production or detritivore growth, which precludes a thorough understanding of how detrital stream food webs are impacted by plant diversity loss. …”
-
11496
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11497
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11498
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11499
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11500