Search alternatives:
point decrease » point increase (Expand Search)
web decrease » we decrease (Expand Search), teer decrease (Expand Search), step decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a web » _ web (Expand Search)
point decrease » point increase (Expand Search)
web decrease » we decrease (Expand Search), teer decrease (Expand Search), step decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a web » _ web (Expand Search)
-
20721
-
20722
Image_2_SIRT1 haplo-insufficiency results in reduced cortical bone thickness, increased porosity and decreased estrogen receptor alpha in bone in adult 129/Sv female mice.tif
Published 2022“…</p>Discussion<p>These findings demonstrate that 50% reduction in SIRT1 is sufficient to induce the hallmarks of skeletal aging namely, decreased cortical thickness and increased porosity in female mice, highlighting the role of SIRT1 as a regulator of cortical bone quantity and quality. …”
-
20723
Image_1_SIRT1 haplo-insufficiency results in reduced cortical bone thickness, increased porosity and decreased estrogen receptor alpha in bone in adult 129/Sv female mice.tif
Published 2022“…</p>Discussion<p>These findings demonstrate that 50% reduction in SIRT1 is sufficient to induce the hallmarks of skeletal aging namely, decreased cortical thickness and increased porosity in female mice, highlighting the role of SIRT1 as a regulator of cortical bone quantity and quality. …”
-
20724
-
20725
-
20726
-
20727
-
20728
-
20729
Data_Sheet_1_Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis.zip
Published 2021“…In particular, F3′5′H and DFR, two genes at a critical branchpoint in the ABP for determining flower color, showed differential expression. …”
-
20730
Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach
Published 2020“…The binding situation in the corresponding cationic complexes Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(NHC)(OC(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)((OC(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
-
20731
Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach
Published 2020“…The binding situation in the corresponding cationic complexes Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(NHC)(OC(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)((OC(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
-
20732
Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach
Published 2020“…The binding situation in the corresponding cationic complexes Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(NHC)(OC(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)((OC(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
-
20733
Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach
Published 2020“…The binding situation in the corresponding cationic complexes Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(NHC)(OC(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)((OC(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
-
20734
Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach
Published 2020“…The binding situation in the corresponding cationic complexes Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(NHC)(OC(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)((OC(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
-
20735
Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach
Published 2020“…The binding situation in the corresponding cationic complexes Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(NHC)(OC(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)((OC(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
-
20736
-
20737
-
20738
A Ligand-Based Drug Design. Discovery of 4‑Trifluoromethyl-7,8-pyranocoumarin as a Selective Inhibitor of Human Cytochrome P450 1A2
Published 2015“…With a 5 min preincubation in the presence of NADPH, 0.01 μM 7,8-furanoflavone completely inactivates P450 1A2 but does not influence the activities of P450s 1A1 and 1B1. …”
-
20739
Changes in the SF change rate every 5 s in Experiment 1.
Published 2023“…Compared to no footsteps condition (NF), the step frequency seems to decrease in the +5 bpm (A) and -5 bpm (B) footsteps condition but there were no significant differences between these conditions.…”
-
20740