Showing 1 - 20 results of 1,371 for search '(( aa ((larger decrease) OR (marked decrease)) ) OR ( via ((step decrease) OR (we decrease)) ))', query time: 0.53s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  10. 10

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  11. 11

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  12. 12

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  13. 13

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  14. 14
  15. 15
  16. 16

    Overview of study procedures. by Matthew G. Vinson (22593374)

    Published 2025
    “…Participants (n = 425) were randomized to either view an electronically-administered educational video informed by the COM-B behavioral change model (VIDEO, n = 223) or the FDA Drug Facts label for NSAIDs (CONTROL, n = 202). Intent to decrease OTC NSAIDs was evaluated via 11-point contemplation ladder immediately and 4 weeks post-intervention, with self-reported NSAID Exposure assessed at 4 weeks. …”
  17. 17

    Table 1_The global burden of aortic aneurysm in adults over 55: evolving trends, risk factors, and projections.pdf by Guoqian Ma (22253182)

    Published 2025
    “…Marked regional and national disparities emerged: the greatest increases in AA burden were seen in low-middle SDI regions [mortality rate EAPC, 1.49 [95% CI, 1.43–1.54]; DALY rate EAPC, 1.29 [95% CI, 1.23–1.35]], while high-income North America and Australasia achieved the largest reductions. …”
  18. 18

    Table 2_The global burden of aortic aneurysm in adults over 55: evolving trends, risk factors, and projections.pdf by Guoqian Ma (22253182)

    Published 2025
    “…Marked regional and national disparities emerged: the greatest increases in AA burden were seen in low-middle SDI regions [mortality rate EAPC, 1.49 [95% CI, 1.43–1.54]; DALY rate EAPC, 1.29 [95% CI, 1.23–1.35]], while high-income North America and Australasia achieved the largest reductions. …”
  19. 19

    Distinct step kinematic parameters in lateral and rear legs. by Emma M. Anderson (19697573)

    Published 2024
    “…Swing duration remained roughly constant with increasing speed, and was longer in rear legs. C-D. Duty factor and step period decrease with increased speed. E-H. Within-animal standard deviations for stance (E) and swing (F) durations, duty factor (G), and period (H). …”
  20. 20