Search alternatives:
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
via decrease » mean decrease (Expand Search), fid decreased (Expand Search), via increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
via decrease » mean decrease (Expand Search), fid decreased (Expand Search), via increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1
-
2
-
3
-
4
-
5
Overview of the parameters used in the model.
Published 2024“…<div><p>Background</p><p>Chikungunya virus (CHIKV) outbreaks, driven by the expanding habitat of the <i>Aedes albopictus</i> mosquito and global climate change, pose a significant threat to public health. Our study evaluates the effectiveness of emergency vaccination using a dynamic disease transmission model for a potential large-scale outbreak in Rome, Italy.…”
-
6
Mortality rates per lifecycle stage [28].
Published 2024“…<div><p>Background</p><p>Chikungunya virus (CHIKV) outbreaks, driven by the expanding habitat of the <i>Aedes albopictus</i> mosquito and global climate change, pose a significant threat to public health. Our study evaluates the effectiveness of emergency vaccination using a dynamic disease transmission model for a potential large-scale outbreak in Rome, Italy.…”
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Compared with SiO<sub>2</sub> aerogels doped with Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> or zirconia fibers, the LHP-doped SiO<sub>2</sub> aerogels (0.1 wt % LHPs) exhibited remarkable performance improvements. A 71% reduction in density was achieved under ambient conditions. …”
-
16
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Compared with SiO<sub>2</sub> aerogels doped with Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> or zirconia fibers, the LHP-doped SiO<sub>2</sub> aerogels (0.1 wt % LHPs) exhibited remarkable performance improvements. A 71% reduction in density was achieved under ambient conditions. …”
-
17
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Compared with SiO<sub>2</sub> aerogels doped with Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> or zirconia fibers, the LHP-doped SiO<sub>2</sub> aerogels (0.1 wt % LHPs) exhibited remarkable performance improvements. A 71% reduction in density was achieved under ambient conditions. …”
-
18
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Compared with SiO<sub>2</sub> aerogels doped with Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> or zirconia fibers, the LHP-doped SiO<sub>2</sub> aerogels (0.1 wt % LHPs) exhibited remarkable performance improvements. A 71% reduction in density was achieved under ambient conditions. …”
-
19
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Compared with SiO<sub>2</sub> aerogels doped with Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> or zirconia fibers, the LHP-doped SiO<sub>2</sub> aerogels (0.1 wt % LHPs) exhibited remarkable performance improvements. A 71% reduction in density was achieved under ambient conditions. …”
-
20
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Compared with SiO<sub>2</sub> aerogels doped with Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> or zirconia fibers, the LHP-doped SiO<sub>2</sub> aerogels (0.1 wt % LHPs) exhibited remarkable performance improvements. A 71% reduction in density was achieved under ambient conditions. …”