Search alternatives:
based optimization » whale optimization (Expand Search)
work optimization » wolf optimization (Expand Search), swarm optimization (Expand Search), dose optimization (Expand Search)
actions based » locations based (Expand Search), reaction based (Expand Search), emotions based (Expand Search)
based work » based network (Expand Search)
based optimization » whale optimization (Expand Search)
work optimization » wolf optimization (Expand Search), swarm optimization (Expand Search), dose optimization (Expand Search)
actions based » locations based (Expand Search), reaction based (Expand Search), emotions based (Expand Search)
based work » based network (Expand Search)
-
1
ROC curve for binary classification.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
2
Confusion matrix for binary classification.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
3
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …”
-
4
-
5
-
6
-
7
Completion times for different algorithms.
Published 2025“…In the context of intelligent manufacturing, there is still significant potential for improving the productivity of riveting and welding tasks in existing H-beam riveting and welding work cells. In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …”
-
8
The average cumulative reward of algorithms.
Published 2025“…In the context of intelligent manufacturing, there is still significant potential for improving the productivity of riveting and welding tasks in existing H-beam riveting and welding work cells. In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …”
-
9
Simulation settings of rMAPPO algorithm.
Published 2025“…In the context of intelligent manufacturing, there is still significant potential for improving the productivity of riveting and welding tasks in existing H-beam riveting and welding work cells. In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …”
-
10
Dataset 1: Zip file containing the figures of the presented methods and results in jpeg files
Published 2025“…<p dir="ltr">Figures represented here illustrates the <b>metaheuristic-based band selection framework</b> for hyperspectral image classification using <b>Binary Jaya Algorithm enhanced with a mutation operator</b> to improve population diversity and avoid premature convergence. …”
-
11
Hyperparameter settings of the algorithm 1.
Published 2024“…The agent updates its network based on different reward values obtained through interactions with the system, thereby gradually aligning the action values with the optimal policy. …”
-
12
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
13
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
-
14
DataSheet1_Study on Dynamic Process Characteristics of CHP Unit With Variable Load Based on Working Point Linearization Modeling.pdf
Published 2022“…<p>In view of the difficulty of applying the refine modeling of combined heat and power (CHP) units to the optimization scenario of integrated energy system, a CHP unit model based on working point linearization modeling is proposed, and its variable load characteristics are analyzed. …”
-
15
-
16
Testing results for classifying AD, MCI and NC.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
17
Summary of existing CNN models.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
18
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
19
A Twin Agent Reinforcement Learning Framework by Integrating Deterministic and Stochastic Policies
Published 2024“…The proposed algorithm uses twin actor networks of different agents, corresponding to deterministic and stochastic agents, and an action selection critic network is used to choose the best action from both agents. …”
-
20
Data_Sheet_1_A Swarm Optimization Solver Based on Ferroelectric Spiking Neural Networks.PDF
Published 2019“…., bird flocks, fish school and ant colonies. SI algorithms provide efficient and practical solutions to many difficult optimization problems through multi-agent metaheuristic search. …”