Showing 1 - 20 results of 72 for search '(( actions based work optimization algorithm ) OR ( binary tasks based optimization algorithm ))', query time: 0.69s Refine Results
  1. 1
  2. 2

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  3. 3

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  4. 4

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
  5. 5
  6. 6

    Completion times for different algorithms. by Jianbin Zheng (587000)

    Published 2025
    “…In the context of intelligent manufacturing, there is still significant potential for improving the productivity of riveting and welding tasks in existing H-beam riveting and welding work cells. In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …”
  7. 7

    The average cumulative reward of algorithms. by Jianbin Zheng (587000)

    Published 2025
    “…In the context of intelligent manufacturing, there is still significant potential for improving the productivity of riveting and welding tasks in existing H-beam riveting and welding work cells. In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …”
  8. 8

    Simulation settings of rMAPPO algorithm. by Jianbin Zheng (587000)

    Published 2025
    “…In the context of intelligent manufacturing, there is still significant potential for improving the productivity of riveting and welding tasks in existing H-beam riveting and welding work cells. In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …”
  9. 9

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
  10. 10

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
  11. 11

    Hyperparameter settings of the algorithm 1. by Jin Xu (31283)

    Published 2024
    “…The agent updates its network based on different reward values obtained through interactions with the system, thereby gradually aligning the action values with the optimal policy. …”
  12. 12

    DataSheet1_Study on Dynamic Process Characteristics of CHP Unit With Variable Load Based on Working Point Linearization Modeling.pdf by Yuehua Huang (3920081)

    Published 2022
    “…<p>In view of the difficulty of applying the refine modeling of combined heat and power (CHP) units to the optimization scenario of integrated energy system, a CHP unit model based on working point linearization modeling is proposed, and its variable load characteristics are analyzed. …”
  13. 13

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  14. 14

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  15. 15

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  16. 16

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  17. 17

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  18. 18

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  19. 19
  20. 20

    Pseudo Code of RBMO. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”