Showing 1 - 20 results of 1,996 for search '(( ai large decrease ) OR ((( via ((we decrease) OR (step decrease)) ) OR ( _ largest decrease ))))', query time: 0.47s Refine Results
  1. 1
  2. 2

    Data Sheet 1_Emotional prompting amplifies disinformation generation in AI large language models.docx by Rasita Vinay (21006911)

    Published 2025
    “…Introduction<p>The emergence of artificial intelligence (AI) large language models (LLMs), which can produce text that closely resembles human-written content, presents both opportunities and risks. …”
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  11. 11

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  12. 12

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  13. 13

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”