Showing 161 - 180 results of 53,244 for search '(( ai large increases ) OR ((( via ((non decrease) OR (a decrease)) ) OR ( a large increases ))))', query time: 1.04s Refine Results
  1. 161
  2. 162
  3. 163
  4. 164
  5. 165
  6. 166

    Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4‑Pyridyl Substituents by Alison M. Costello (16456762)

    Published 2023
    “…To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. …”
  7. 167

    Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4‑Pyridyl Substituents by Alison M. Costello (16456762)

    Published 2023
    “…To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. …”
  8. 168

    Image_3_Down-Regulation of LOC645166 in T Cells of Ankylosing Spondylitis Patients Promotes the NF-κB Signaling via Decreasingly Blocking Recruitment of the IKK Complex to K63-Link... by Hui-Chun Yu (470632)

    Published 2021
    “…However, only 1%–2% of the HLA-B27-positive carriers suffer from AS, implying that other factors may also govern the development of AS. Long non-coding RNAs (lncRNAs) can regulate the immune response via their binding proteins. …”
  9. 169

    Image_2_Down-Regulation of LOC645166 in T Cells of Ankylosing Spondylitis Patients Promotes the NF-κB Signaling via Decreasingly Blocking Recruitment of the IKK Complex to K63-Link... by Hui-Chun Yu (470632)

    Published 2021
    “…However, only 1%–2% of the HLA-B27-positive carriers suffer from AS, implying that other factors may also govern the development of AS. Long non-coding RNAs (lncRNAs) can regulate the immune response via their binding proteins. …”
  10. 170

    Image_4_Down-Regulation of LOC645166 in T Cells of Ankylosing Spondylitis Patients Promotes the NF-κB Signaling via Decreasingly Blocking Recruitment of the IKK Complex to K63-Link... by Hui-Chun Yu (470632)

    Published 2021
    “…However, only 1%–2% of the HLA-B27-positive carriers suffer from AS, implying that other factors may also govern the development of AS. Long non-coding RNAs (lncRNAs) can regulate the immune response via their binding proteins. …”
  11. 171

    Table_1_Down-Regulation of LOC645166 in T Cells of Ankylosing Spondylitis Patients Promotes the NF-κB Signaling via Decreasingly Blocking Recruitment of the IKK Complex to K63-Link... by Hui-Chun Yu (470632)

    Published 2021
    “…However, only 1%–2% of the HLA-B27-positive carriers suffer from AS, implying that other factors may also govern the development of AS. Long non-coding RNAs (lncRNAs) can regulate the immune response via their binding proteins. …”
  12. 172

    Image_1_Down-Regulation of LOC645166 in T Cells of Ankylosing Spondylitis Patients Promotes the NF-κB Signaling via Decreasingly Blocking Recruitment of the IKK Complex to K63-Link... by Hui-Chun Yu (470632)

    Published 2021
    “…However, only 1%–2% of the HLA-B27-positive carriers suffer from AS, implying that other factors may also govern the development of AS. Long non-coding RNAs (lncRNAs) can regulate the immune response via their binding proteins. …”
  13. 173
  14. 174
  15. 175

    Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss <i>in vivo</i> by Kathleen M. McAvoy (7224863)

    Published 2019
    “…Taken together, our data suggest that the contribution of genetic variation in BIN1 locus to AD risk could result from a cell-autonomous reduction of neuronal excitability due to Bin1 decrease, exacerbated by the presence of aggregated Tau, coupled with a non-cell autonomous microglia activation.…”
  16. 176
  17. 177
  18. 178
  19. 179
  20. 180