Showing 1 - 20 results of 3,279 for search '(( ai larger decrease ) OR ((( a ((step decrease) OR (nn decrease)) ) OR ( _ large decrease ))))', query time: 0.55s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Effective contact rate over time for the different modelling scenarios considered: fixed, continuously increasing, continuously decreasing and with a step-decrease. by Joshua Looker (21390948)

    Published 2025
    “…<p>Effective contact rate over time for the different modelling scenarios considered: fixed, continuously increasing, continuously decreasing and with a step-decrease.</p>…”
  7. 7
  8. 8
  9. 9

    Polylactic Acid/Polybutylene Adipate Terephthalate-Carbon Nanotube Nanobiocomposites with a Segregated Toughening Morphology Yielding Large Ductility for Biocompatible Materials by Utsab Ayan (18552401)

    Published 2025
    “…Selective deposition and encapsulation of nanodispersed multiwalled carbon nanotubes (MWCNT) exclusively within polybutylene adipate terephthalate (PBAT) microdomains in a phase-separated microstructure of 80/20 polylactic acid (PLA)/PBAT polymer nanocomposites (PNCs) were achieved by a three-step processing strategy. …”
  10. 10
  11. 11

    Table of step height. by Jianbo Jia (717814)

    Published 2024
    “…The simulation results show that for steps of 1mm, 2mm and 3mm height, the optimal polyline angle is concentrated in the range of 10°-11°, in which the Angle of 10.5° has a good performance against the steps of three heights. …”
  12. 12

    The well wall step. by Jianbo Jia (717814)

    Published 2024
    “…The simulation results show that for steps of 1mm, 2mm and 3mm height, the optimal polyline angle is concentrated in the range of 10°-11°, in which the Angle of 10.5° has a good performance against the steps of three heights. …”
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses by Jing Wang (6206297)

    Published 2025
    “…However, how global land use changes impact soil N supply and potential N loss remains elusive. By compiling a global data set of 1,782 paired observations from 185 publications, we show that land use conversion from natural to managed ecosystems significantly reduced NNM by 7.5% (−11.5, −2.8%) and increased NN by 150% (86, 194%), indicating decreasing N availability while increasing potential N loss through denitrification and nitrate leaching. …”
  20. 20