Search alternatives:
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
point decrease » point increase (Expand Search)
_ decrease » _ decreased (Expand Search), _ decreasing (Expand Search)
ai larger » ai large (Expand Search), _ larger (Expand Search), i large (Expand Search)
a large » _ large (Expand Search)
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
point decrease » point increase (Expand Search)
_ decrease » _ decreased (Expand Search), _ decreasing (Expand Search)
ai larger » ai large (Expand Search), _ larger (Expand Search), i large (Expand Search)
a large » _ large (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Point load strength apparatus: (a) before modification; (b) after modification.
Published 2025Subjects: -
12
-
13
-
14
A novel RNN architecture to improve the precision of ship trajectory predictions
Published 2025“…However, this model can be time-consuming and can only represent a single vessel track. To solve these challenges, Recurrent Neural Network (RNN) models have been applied to STP to allow scalability for large data sets and to capture larger regions or anomalous vessels behavior. …”
-
15
-
16
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
17
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
18
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
19
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
20
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”