Search alternatives:
largest decrease » marked decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
ai larger » ai large (Expand Search), a large (Expand Search), _ larger (Expand Search)
_ largest » _ large (Expand Search)
largest decrease » marked decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
ai larger » ai large (Expand Search), a large (Expand Search), _ larger (Expand Search)
_ largest » _ large (Expand Search)
-
1
The top 10 putative metabolites with the largest negative fold change between normal and thin cows.
Published 2025Subjects: -
2
The top 10 putative metabolites with the largest positive fold change between normal and thin cows.
Published 2025Subjects: -
3
-
4
-
5
-
6
-
7
-
8
Loss of Vps34 is associated with decreased eTreg survival but intact activation.
Published 2025Subjects: -
9
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
10
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
11
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
12
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
13
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
14
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
15
-
16
-
17
-
18
Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations
Published 2024“…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
-
19
Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations
Published 2024“…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
-
20
Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations
Published 2024“…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”