بدائل البحث:
algorithms python » algorithms within (توسيع البحث), algorithm within (توسيع البحث), algorithms often (توسيع البحث)
python function » protein function (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), limb function (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), link function (توسيع البحث)
algorithms python » algorithms within (توسيع البحث), algorithm within (توسيع البحث), algorithms often (توسيع البحث)
python function » protein function (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), limb function (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), link function (توسيع البحث)
-
1
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
-
2
FAR-1: A Fast Integer Reduction Algorithm Compared to Collatz and Half-Collatz
منشور في 2025الموضوعات: -
3
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
منشور في 2025"…For a RDKit molecule, it provides (i) a PNG binary string with an image of the molecule with color-highlighted functional groups; (ii) a list of sets of atom indices (idx), each set corresponding to a functional group; (iii) a list of pseudo-SMILES canonicalized strings for the full functional groups; and (iv) a list of RDKit labeled mol objects, one for each full functional group. …"
-
4
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
منشور في 2025"…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …"
-
5
-
6
A detailed process of iterative simulation coupled with bone density algorithm; (a) a function of stimulus and related bone density changes, and (b) iterative calculations of finite element analysis coupled with user’s subroutine for changes in bone density.
منشور في 2025"…<p>A detailed process of iterative simulation coupled with bone density algorithm; (a) a function of stimulus and related bone density changes, and (b) iterative calculations of finite element analysis coupled with user’s subroutine for changes in bone density.…"
-
7
<b>Functional excitation-inhibition ratio indicates near-critical oscillations across frequencies</b>
منشور في 2024"…<p dir="ltr">The <i>zip</i> file contains the code and data for the analyses/figures described in the paper titled "<b>Functional excitation-inhibition ratio indicates near-critical oscillations across frequencies</b>" published in September in 2024 in Imaging Neuroscience.…"
-
8
Functions in nhppp.
منشور في 2024"…We developed it to facilitate the sampling of event times in discrete event and statistical simulations. The package’s functions are based on three algorithms that provably sample from a target NHPPP: the time-transformation of a homogeneous Poisson process (of intensity one) via the inverse of the integrated intensity function; the generation of a Poisson number of order statistics from a fixed density function; and the thinning of a majorizing NHPPP via an acceptance-rejection scheme. …"
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
Iteration curve of each algorithm: (a) Convergence curves of the average best fitness for functions F1-F10, (b) Convergence curves of the average best fitness for functions F11-F20 and (c) Correspondence between curve colors and algorithms.
منشور في 2025"…<p>Iteration curve of each algorithm: (a) Convergence curves of the average best fitness for functions F1-F10, (b) Convergence curves of the average best fitness for functions F11-F20 and (c) Correspondence between curve colors and algorithms.…"