Search alternatives:
algorithm spread » algorithm pre (Expand Search), algorithms real (Expand Search), algorithms sorted (Expand Search)
python function » protein function (Expand Search)
brain function » barrier function (Expand Search), protein function (Expand Search)
algorithm spread » algorithm pre (Expand Search), algorithms real (Expand Search), algorithms sorted (Expand Search)
python function » protein function (Expand Search)
brain function » barrier function (Expand Search), protein function (Expand Search)
-
161
-
162
-
163
Estimation accuracy comparison between five methods for two blur parameters.
Published 2020Subjects: -
164
-
165
-
166
-
167
-
168
-
169
-
170
-
171
-
172
Data_Sheet_1_Prediction of motor function in patients with traumatic brain injury using genetic algorithms modified back propagation neural network: a data-based study.docx
Published 2023“…</p>Conclusion<p>The genetic algorithms modified back propagation neural network can predict motor function in patients with traumatic brain injury, which can be used as a reference for risk and prognosis assessment and guide clinical decision-making.…”
-
173
Data_Sheet_1_Prediction of motor function in patients with traumatic brain injury using genetic algorithms modified back propagation neural network: A data-based study.docx
Published 2023“…</p>Conclusion<p>The genetic algorithms modified back propagation neural network can predict motor function in patients with traumatic brain injury, which can be used as a reference for risk and prognosis assessment and guide clinical decision-making.…”
-
174
Swarm intelligence algorithms for multi-objective max-min-ISP
Published 2023“…<p>Algorithms implemented on article "<strong>On the max-min influence spread problem: A multi-objective optimization approach</strong>"</p> <p><br></p> <p>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--spread SPREAD] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--prunelowdeg] [--excludenodes EXCLUDENODES] [--includeindegzero] [--nodepthcriteria] [--memfile MEMFILE] file</p> <p><br></p> <p>Calculates the best Influence Spread set on a Weighted Graph using PSO</p> <p><br></p> <p>positional arguments:</p> <p>file</p> <p><br></p> <p>options:</p> <p>-h, --help: show this help message and exit</p> <p>-a: read file input contents as an Adjacency Matrix</p> <p>-r: reverse nodes order, reads (b,a,w) instead of (a,b,w)</p> <p>-d D: line separator to use on file parsing</p> <p>-t T: number of times to execute this solver</p> <p>-i I: number of metaheuristic iterations per execution</p> <p>-q Q: fixed quota, use 0 = floor(n/2)+1</p> <p>--shape SHAPE: shape functions for binarization - list of implemented shape functions: s2, s2_neg, v2, v4</p> <p>--sym: consider graph as symmetric instead of directed</p> <p>--folder FOLDER: output folder</p> <p>--seed SEED: use custom seeds for metaheuristic pseudo RNG</p> <p>--spread SPREAD: use specific influence spread model funcion - list of implemented models: LT, IC</p> <p>--sum SUM: adds an extra value to all edge's weight</p> <p>--mh MH: metaheuristic to use - list of implemented metaheuristics: 1 (Swarm3), 3 (Swarm3_W), 4 (Swarm3_L), 5 (Swarm4)</p> <p>--tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</p> <p>--notags: do not use first row as node tags, instead tags will be calculated</p> <p>--prune: nodes with (1) outdegree = 0 and indegree > 0, and (2) with outdegree = 1 and neighbor's outdegree > 0 will be excluded</p> <p>--prunelowdeg: nodes with low outdegree or degree will be excluded</p> <p>--excludenodes EXCLUDENODES: nodes to skip, must be comma separated</p> <p>--includeindegzero: forces to include nodes with indegree = 0 on all executions</p> <p>--nodepthcriteria: particles will not tie off with spread depth in case of having same fitness and spread</p> <p>--memfile MEMFILE: memory dump of other execution</p>…”
-
175
-
176
-
177
-
178
-
179
-
180