يعرض 61 - 80 نتائج من 11,970 نتيجة بحث عن '(( algorithm ((python function) OR (protein function)) ) OR ( algorithm models function ))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 61
  2. 62
  3. 63
  4. 64

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…In this work, we introduce <i>GlycanDock</i>, a residue-centric protein–glycoligand docking refinement algorithm developed within the Rosetta macromolecular modeling and design software suite. …"
  5. 65

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…In this work, we introduce <i>GlycanDock</i>, a residue-centric protein–glycoligand docking refinement algorithm developed within the Rosetta macromolecular modeling and design software suite. …"
  6. 66

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…In this work, we introduce <i>GlycanDock</i>, a residue-centric protein–glycoligand docking refinement algorithm developed within the Rosetta macromolecular modeling and design software suite. …"
  7. 67

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…In this work, we introduce <i>GlycanDock</i>, a residue-centric protein–glycoligand docking refinement algorithm developed within the Rosetta macromolecular modeling and design software suite. …"
  8. 68

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…In this work, we introduce <i>GlycanDock</i>, a residue-centric protein–glycoligand docking refinement algorithm developed within the Rosetta macromolecular modeling and design software suite. …"
  9. 69
  10. 70

    Core genes were selected through PPI analysis based on three algorithms. حسب Dong-Hee Han (140305)

    منشور في 2024
    "…<b>(B)</b> The priority of the top 10 genes was evaluated through MNC, which identifies clusters of protein nodes that are more functionally connected to each other and selects the central proteins within the cluster. …"
  11. 71
  12. 72
  13. 73
  14. 74

    A Schematic flowchart of the ANN Models. حسب Saksham Phul (12437059)

    منشور في 2022
    الموضوعات:
  15. 75
  16. 76

    Pair Potentials as Machine Learning Features حسب Jun Pei (1765720)

    منشور في 2020
    الموضوعات:
  17. 77

    Pair Potentials as Machine Learning Features حسب Jun Pei (1765720)

    منشور في 2020
    الموضوعات:
  18. 78

    Pair Potentials as Machine Learning Features حسب Jun Pei (1765720)

    منشور في 2020
    الموضوعات:
  19. 79
  20. 80