بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
three function » three functional (توسيع البحث), tree functional (توسيع البحث), time function (توسيع البحث)
phase function » gcase function (توسيع البحث), sphere function (توسيع البحث), rate function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
three function » three functional (توسيع البحث), tree functional (توسيع البحث), time function (توسيع البحث)
phase function » gcase function (توسيع البحث), sphere function (توسيع البحث), rate function (توسيع البحث)
-
161
-
162
-
163
Comparison of performance metrics between the baseline model and CFMM on three datasets.
منشور في 2025الموضوعات: -
164
-
165
-
166
Predicting the Mutagenic Activity of Nitroaromatics Using Conceptual Density Functional Theory Descriptors and Explainable No-Code Machine Learning Approaches
منشور في 2025"…This study integrates conceptual density functional theory (CDFT) descriptors with explainable no-code machine learning (ML) models to predict NA mutagenicity based on Ames test results. …"
-
167
Flowchart of proposed algorithm.
منشور في 2025"…Moreover, the proposed algorithm significantly extends network lifetime, with a <b>3.5%</b> and <b>7.5%</b> improvement over EAPS-AODV and AODV. …"
-
168
-
169
The result for the risk assessment on three datasets using different optimal methods.
منشور في 2025الموضوعات: -
170
-
171
-
172
-
173
-
174
-
175
Control parameters of the SOMA algorithm.
منشور في 2025"…To optimize this cost function, we employ the self-organizing migrating algorithm, a swarm intelligence algorithm inspired by the cooperative and competitive behaviors observed in natural organisms. …"
-
176
Imperialist competition algorithm with quasi-opposition-based learning for function optimization and engineering design problems
منشور في 2024"…The effectiveness of the proposed QOBL-ICA is verified by testing on 20 benchmark functions and 3 engineering design problems. Experimental results show that the performance of QOBL-ICA is superior to most state-of-the-art meta-heuristic algorithms in terms of global optimum reached and convergence speed.…"
-
177
-
178
-
179
Benchmark test function results.
منشور في 2025"…In addition, to verify the performance and robustness of LLSKSO, comparison experiments between LLSKSO and 10 well-known algorithms are conducted on 50 benchmark test functions. …"
-
180