Search alternatives:
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » spc function (Expand Search), fc function (Expand Search), npc function (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » spc function (Expand Search), fc function (Expand Search), npc function (Expand Search)
-
721
Table5_Deciphering the role of lipid metabolism-related genes in Alzheimer’s disease: a machine learning approach integrating Traditional Chinese Medicine.xlsx
Published 2024“…To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers.…”
-
722
Assessing the risk of acute kidney injury associated with a four-drug regimen for heart failure: a ten-year real-world pharmacovigilance analysis based on FAERS events
Published 2025“…Disproportionality analysis and subgroup analysis were performed using four algorithms. Time-to-onset (TTO) analysis was used to assess the temporal risk patterns of ADE occurrence. …”
-
723
<b>Leveraging protected areas for dual goals of biodiversity conservation and zoonotic</b> <b>risk reduction</b>
Published 2025“…Each approach was run using both the Additive Benefit Function (ABF) and Core-Area Zonation (CAZ) algorithms.…”
-
724
Identification of potential circadian rhythm-related hub genes and immune infiltration in preeclampsia through bioinformatics analysis
Published 2025“…Molecular subtyping based on their expression revealed two PE subtypes with distinct immune infiltration patterns and biological functions. Regulatory network construction highlighted potential upstream mechanisms.…”
-
725
Data Sheet 1_Differential neuropilin isoform expressions highlight plasticity in macrophages in the heterogenous TME through in-silico profiling.docx
Published 2025“…Datasets were processed using established bioinformatics pipelines, including clustering algorithms, to determine cellular heterogeneity and quantify NRP isoform expression within distinct macrophage populations. …”
-
726
Data Sheet 2_Differential neuropilin isoform expressions highlight plasticity in macrophages in the heterogenous TME through in-silico profiling.docx
Published 2025“…Datasets were processed using established bioinformatics pipelines, including clustering algorithms, to determine cellular heterogeneity and quantify NRP isoform expression within distinct macrophage populations. …”
-
727
Data used to drive the Double Layer Carbon Model in the Qinling Mountains.
Published 2024“…., 2022a), to estimate the spatiotemporal dynamics of SOC in different soil layers and further evaluate the impacts of different climate response functions on SOC estimates in the Qinling Mountains. …”
-
728
Table 5_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
729
Table 3_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
730
Table 6_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
731
Table 2_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
732
Table 4_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
733
Table 7_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
734
Table 1_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
735
Table 8_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”
-
736
<b>Figures for Protein-Protein interaction (PPI) network of differentially acetylated proteins</b><b> </b><b>by Aspirin during differentiation of THP-1 cell towards macrophage</b>
Published 2025“…The protein-protein interaction (PPI) networks were generated using STRING (H. sapiens; confidence score > 0.7) and visualized in Cytoscape 3.2.1. to elucidate how Aspirin-driven acetylated proteins functionally coordinate within cellular systems. The PPI network was further analyzed to identify densely interconnected functional clusters/modules using topological clustering algorithms. …”
-
737
<b>Protein-Protein interaction (PPI) network of differentially acetylated proteins</b><b> by Aspirin during differentiation of THP-1 cell towards macrophage</b>
Published 2025“…The protein-protein interaction (PPI) networks were generated using STRING (H. sapiens; confidence score > 0.7) and visualized in Cytoscape 3.2.1. to elucidate how Aspirin-driven acetylated proteins functionally coordinate within cellular systems. The PPI network was further analyzed to identify densely interconnected functional clusters/modules using topological clustering algorithms. …”
-
738
A paired dataset of multi-modal MRI at 3 Tesla and 7 Tesla with manual hippocampal subfield segmentations on 7T T2-weighted images
Published 2024“…<p dir="ltr">The hippocampus, a region of critical interest within clinical neuroscience, is recognized as a complex structure comprising distinct subfields with unique functional attributes, connectivity patterns, and susceptibilities to disease. …”
-
739
Data Sheet 1_Deep learning in microbiome analysis: a comprehensive review of neural network models.pdf
Published 2025“…These computational techniques have become essential for addressing the inherent complexity and high-dimensionality of microbiome data, which consist of different types of omics datasets. Deep learning algorithms have shown remarkable capabilities in pattern recognition, feature extraction, and predictive modeling, enabling researchers to uncover hidden relationships within microbial ecosystems. …”
-
740
Data Sheet 2_Deep learning in microbiome analysis: a comprehensive review of neural network models.pdf
Published 2025“…These computational techniques have become essential for addressing the inherent complexity and high-dimensionality of microbiome data, which consist of different types of omics datasets. Deep learning algorithms have shown remarkable capabilities in pattern recognition, feature extraction, and predictive modeling, enabling researchers to uncover hidden relationships within microbial ecosystems. …”