يعرض 1 - 20 نتائج من 13,128 نتيجة بحث عن '(( algorithm 1 function ) OR ((( algorithm within function ) OR ( algorithm l function ))))', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1
  2. 2
  3. 3

    Algorithmic assessment reveals functional implications of GABRD gene variants linked to idiopathic generalized epilepsy حسب Ayla Arslan (17943365)

    منشور في 2024
    "…</p> <p>The study identifies specific variants (L111R, R114C, D123N, G150S, and L243P) in the coding region of the GABRD gene, which are predicted as deleterious by multiple algorithms. …"
  4. 4

    Procedure of the DCT-based EIT algorithm. حسب Rongqing Chen (249906)

    منشور في 2023
    الموضوعات:
  5. 5

    Comparison of details of different algorithms. حسب Hao Wu (65943)

    منشور في 2024
    الموضوعات:
  6. 6

    Structure of the LMPEC algorithm model. حسب Hao Wu (65943)

    منشور في 2024
    الموضوعات:
  7. 7

    Multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  8. 8

    Algorithm for generating virtual patients. حسب Adrianne L. Jenner (11133854)

    منشور في 2021
    "…<b>2)</b> The model evaluated is then simulated on this parameter set to obtain <i>y</i>(<i>t</i>, <i>p</i>). <b>3)</b> A simulated annealing algorithm is then used to determine a parameter set that optimises the objective function <i>J</i>(<i>p</i>) (<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1009753#ppat.1009753.e059" target="_blank">Eq 17</a>). …"
  9. 9

    The convergence curves of the test functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  10. 10

    Single-peaked reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  11. 11

    Predictive Mixing for Density Functional Theory (and Other Fixed-Point Problems) حسب L. D. Marks (1949689)

    منشور في 2021
    "…Density functional theory calculations use a significant fraction of current supercomputing time. …"
  12. 12
  13. 13

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  14. 14

    Fixed-dimensional multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  15. 15

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20