بدائل البحث:
algorithms within » algorithm within (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithm both (توسيع البحث)
algorithm a » algorithms a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
a function » _ function (توسيع البحث)
algorithms within » algorithm within (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithm both (توسيع البحث)
algorithm a » algorithms a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
a function » _ function (توسيع البحث)
-
1
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…</p><p dir="ltr">The package includes:</p><ul><li>Scripts for first-order analysis, third-order modeling, optimization using a Physically Grounded Merit Function (PGMF), and RMS-based refinement.…"
-
2
Reward function related parameters.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
3
Main parameters of braking system.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
4
EMB and SBW system structure.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
5
Raw data.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
6
Code program.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
7
The HIL simulation data flowchart.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
8
Steering system model.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
9
Hyperparameter Configurations in PPO Training.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
10
Main parameters of steering system.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
11
Co-simulation architecture.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
12
Overall framework diagram of the study.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
13
Braking system model.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
14
Vehicle parameters.
منشور في 2025"…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
-
15
-
16
-
17
GridScopeRodents: High-Resolution Global Typical Rodents Distribution Projections from 2021 to 2100 under Diverse SSP-RCP Scenarios
منشور في 2025"…Using occurrence data and environmental variable, we employ the Maximum Entropy (MaxEnt) algorithm within the species distribution modeling (SDM) framework to estimate occurrence probability at a spatial resolution of 1/12° (~10 km). …"
-
18
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…"
-
19
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"
-
20
Brain-in-the-Loop Learning for Intelligent Vehicle Decision-Making
منشور في 2025"…In this paper, we utilize functional near-infrared spectroscopy (fNIRS) signals as real-time human risk-perception feedback to establish a brain-in-the-loop (BiTL) trained artificial intelligence algorithm for decision-making. …"