يعرض 1 - 20 نتائج من 22 نتيجة بحث عن '(( algorithm a function ) OR ( ((algorithm python) OR (algorithms within)) function ))~', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer حسب Morgan Najera (21540776)

    منشور في 2025
    "…</p><p dir="ltr">The package includes:</p><ul><li>Scripts for first-order analysis, third-order modeling, optimization using a Physically Grounded Merit Function (PGMF), and RMS-based refinement.…"
  2. 2

    Reward function related parameters. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  3. 3

    Main parameters of braking system. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  4. 4

    EMB and SBW system structure. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  5. 5

    Raw data. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  6. 6

    Code program. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  7. 7

    The HIL simulation data flowchart. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  8. 8

    Steering system model. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  9. 9

    Hyperparameter Configurations in PPO Training. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  10. 10

    Main parameters of steering system. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  11. 11

    Co-simulation architecture. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  12. 12

    Overall framework diagram of the study. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  13. 13

    Braking system model. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  14. 14

    Vehicle parameters. حسب Honglei Pang (22693724)

    منشور في 2025
    "…Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.…"
  15. 15
  16. 16
  17. 17

    GridScopeRodents: High-Resolution Global Typical Rodents Distribution Projections from 2021 to 2100 under Diverse SSP-RCP Scenarios حسب Yang Lan (20927512)

    منشور في 2025
    "…Using occurrence data and environmental variable, we employ the Maximum Entropy (MaxEnt) algorithm within the species distribution modeling (SDM) framework to estimate occurrence probability at a spatial resolution of 1/12° (~10 km). …"
  18. 18

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) حسب Erola Fenollosa (20977421)

    منشور في 2025
    "…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…"
  19. 19

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows حسب Pierre-Alexis DELAROCHE (22092572)

    منشور في 2025
    "…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"
  20. 20

    Brain-in-the-Loop Learning for Intelligent Vehicle Decision-Making حسب Xiaofei Zhang (16483224)

    منشور في 2025
    "…In this paper, we utilize functional near-infrared spectroscopy (fNIRS) signals as real-time human risk-perception feedback to establish a brain-in-the-loop (BiTL) trained artificial intelligence algorithm for decision-making. …"