Search alternatives:
achieves function » achieve functions (Expand Search)
algorithms within » algorithm within (Expand Search)
algorithm python » algorithm within (Expand Search), algorithm both (Expand Search)
achieves function » achieve functions (Expand Search)
algorithms within » algorithm within (Expand Search)
algorithm python » algorithm within (Expand Search), algorithm both (Expand Search)
-
1
-
2
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
Published 2025“…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…”
-
3
-
4
-
5
Multimodal reference functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
6
-
7
Schematic diagram of sliding mode variable structure control algorithm design content.
Published 2024Subjects: -
8
The convergence curves of the test functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
9
Single-peaked reference functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
10
NRPStransformer, an Accurate Adenylation Domain Specificity Prediction Algorithm for Genome Mining of Nonribosomal Peptides
Published 2025“…Leveraging the sequences within the flavodoxin-like subdomain, we developed a substrate specificity prediction algorithm using a protein language model, achieving 92% overall prediction accuracy for 43 frequently observed amino acids, significantly improving the prediction reliability. …”
-
11
Test results of multimodal benchmark functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
12
Fixed-dimensional multimodal reference functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
13
Test results of multimodal benchmark functions.
Published 2025“…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
-
14
Test functions.
Published 2025“…The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. …”
-
15
Biological Function Assignment across Taxonomic Levels in Mass-Spectrometry-Based Metaproteomics via a Modified Expectation Maximization Algorithm
Published 2025“…To overcome this limitation, we implemented an expectation-maximization (EM) algorithm, along with a biological function database, within the MiCId workflow. …”
-
16
Fitness comparison on test function.
Published 2025“…The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. …”
-
17
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …”
-
18
R-squared comparison of test function.
Published 2025“…The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. …”
-
19
-
20
Image 4_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre...
Published 2025“…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…”