بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm growth » algorithm both (توسيع البحث), algorithm flow (توسيع البحث), algorithm from (توسيع البحث)
python function » protein function (توسيع البحث)
growth function » growth direction (توسيع البحث)
algorithm ai » algorithm a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
ai function » api function (توسيع البحث), a function (توسيع البحث), i function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm growth » algorithm both (توسيع البحث), algorithm flow (توسيع البحث), algorithm from (توسيع البحث)
python function » protein function (توسيع البحث)
growth function » growth direction (توسيع البحث)
algorithm ai » algorithm a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
ai function » api function (توسيع البحث), a function (توسيع البحث), i function (توسيع البحث)
-
441
Image4_Role of ARRB1 in prognosis and immunotherapy: A Pan-Cancer analysis.jpeg
منشور في 2025"…ESTIMATE and CIBERSORT algorithms were performed to assess immune infiltration. …"
-
442
Image1_Role of ARRB1 in prognosis and immunotherapy: A Pan-Cancer analysis.jpeg
منشور في 2025"…ESTIMATE and CIBERSORT algorithms were performed to assess immune infiltration. …"
-
443
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"
-
444
Image 1_Machine learning identifies neutrophil extracellular traps-related biomarkers for acute ischemic stroke diagnosis.tif
منشور في 2025"…</p>Methods<p>Two GEO datasets (GSE37587 and GSE16561) were integrated to identify differentially expressed genes (DEGs) between AIS patients and healthy controls. Gene Set Enrichment Analysis (GSEA) was performed to explore functional pathways, while single-sample GSEA (ssGSEA) was used to evaluate immune cell infiltration patterns. …"
-
445
Table 1_Machine learning identifies neutrophil extracellular traps-related biomarkers for acute ischemic stroke diagnosis.docx
منشور في 2025"…</p>Methods<p>Two GEO datasets (GSE37587 and GSE16561) were integrated to identify differentially expressed genes (DEGs) between AIS patients and healthy controls. Gene Set Enrichment Analysis (GSEA) was performed to explore functional pathways, while single-sample GSEA (ssGSEA) was used to evaluate immune cell infiltration patterns. …"
-
446
Table 1_Explainable machine learning model for predicting the outcome of acute ischemic stroke after intravenous thrombolysis.docx
منشور في 2025"…Introduction<p>Acute ischemic stroke (AIS) patients often experience poor functional outcomes post-intravenous thrombolysis (IVT). …"